The polymeric Au/Tl compounds [{Au(C6X5)2}Tl]n (X = Cl, F) react with the crown thioethers 1,4,7-trithiacyclononane ([9]aneS3), 1,5,8,11-tetrathiacyclotetradecane ([14]aneS4), and 1,4,7,10,13,16,19,22-octathiacyclotetracosane ([24]aneS8) in an appropriate molar ratio to afford [{Au(C6X5)2}Tl(L)]2 [L = [9]aneS3, X = Cl (1), F (4); L = [14]aneS4, X = Cl (2), F (5)], [{Au(C6Cl5)2}2Tl2([24]aneS8)]n (3) or [{Au(C6F5)2}2Tl2([24]aneS8)] (6). X-ray diffraction studies of 3, 4 and 6 reveal polymeric (3) or tetranuclear (4, 6) structures formed via Tl-S bonds and AuTl or AuTl and AuAu contacts. All the complexes are luminescent in the solid state, but not in solution, where the metal-metal interactions, which are responsible for the luminescence, are no longer present. DFT calculations on representative model systems of complexes 3, 4 and 6 have also been carried out in order to determine the origin of the electronic transitions responsible for their optical properties.