Wearable robotic devices require sensors and algorithms that can recognize the user state in real-time, in order to provide synergistic action with the body. For devices intended for locomotion-related applications, shoe-embedded sensors are a common and convenient choice, potentially advantageous for performing gait assessment in real-world environments. In this work, we present the development of a pair of pressure-sensitive insoles based on optoelectronic sensors for the real-time estimation of temporal gait parameters. The new design makes use of a simplified sensor configuration that preserves the time accuracy of gait event detection relative to previous prototypes. The system has been assessed relatively to a commercial force plate recording the vertical component of the ground reaction force (vGRF) and the coordinate of the center of pressure along the so-called progression or antero-posterior plane (CoPAP) in ten healthy participants during ground-level walking at two speeds. The insoles showed overall median absolute errors (MAE) of 0.06 (0.02) s and 0.04 (0.02) s for heel-strike and toe-off recognition, respectively. Moreover, they enabled reasonably accurate estimations of the stance phase duration (2.02 (2.03) % error) and CoPAP profiles (Pearson correlation coefficient with force platform ρCoP = 0.96 (0.02)), whereas the correlation with vGRF measured by the force plate was lower than that obtained with the previous prototype (ρvGRF = 0.47 (0.20)). These results confirm the suitability of the insoles for online sensing purposes such as timely gait phase estimation and discrete event recognition.
Robotic exoskeletons are regarded as promising technologies for neurological gait rehabilitation but have been investigated comparatively little as training aides to facilitate active aging in the elderly. This study investigated the feasibility of an exoskeletal Active Pelvis Orthosis (APO) for cardiopulmonary gait training in the elderly. Ten healthy elderly volunteers exhibited a decreased (−26.6 ± 16.1%) Metabolic Cost of Transport (MCoT) during treadmill walking following a 4-week APO-assisted training program, while no significant changes were observed for a randomly assigned control group (n = 10) performing traditional self-paced overground walking. Moreover, robot-assisted locomotion was found to require 4.24 ± 2.57% less oxygen consumption than free treadmill walking at the same speed. These findings support the adoption of exoskeletal devices for the training of frail individuals, thus opening new possibilities for sustainable strategies for healthy aging.
Restoring locomotion functionality of transfemoral amputees is essential for early rehabilitation treatment and for preserving mobility and independence in daily life. Research in wearable robotics fostered the development of innovative active mechatronic lower-limb prostheses designed with the goal to reduce the cognitive and physical effort of lower-limb amputees in rehabilitation and daily life activities. To ensure benefits to the users, active mechatronic prostheses are expected to be aware of the user intention and properly interact in a closed human-in-the-loop paradigm. In the state of the art various cognitive interfaces have been proposed to online decode the user's intention. Electromyography in combination with mechanical sensing such as inertial or pressure sensors is a widely adopted solution for driving active mechatronic prostheses. In this framework, researchers also explored targeted muscles re-innervation for an objective-oriented surgical amputation promoting wider usability of active prostheses. However, information kept by the neural component of the cognitive interface deteriorates in a prolonged use scenario due to electrodes-related issues, thereby undermining the correct functionality of the active prosthesis. The objective of this work is to present a novel controller for an active transfemoral prosthesis based on whole body awareness relying on a wireless distributed non-invasive sensory apparatus acting as cognitive interface. A finite-state machine controller based on signals monitored from the wearable interface performs subject-independent intention detection of functional tasks such as ground level walking, stair ascent, and sit-to-stand maneuvres and their main sub-phases. Experimental activities carried out with four transfemoral amputees (among them one dysvascular) demonstrated high reliability of the controller capable of providing 100% accuracy rate in treadmill walking even for weak subjects and low walking speeds. The minimum success rate was of 94.8% in performing sit-to-stand tasks. All the participants showed high confidence in using the transfemoral active prosthesis even without training period thanks to intuitiveness of the whole body awareness controller.
Gait asymmetry in lower-limb amputees can lead to several secondary conditions that can decrease general health and quality of life. Including augmented sensory feedback in rehabilitation programs can effectively mitigate spatiotemporal gait irregularities. Such benefits can be obtained with non-invasive haptic systems representing an advantageous choice for usability in overground training and every-day life. In this study, we tested a wearable tactile feedback device delivering short-lasting (100 ms) vibrations around the waist syncronized to gait events, to improve the temporal gait symmetry of lower-limb amputees. Three above-knee amputees participated in the study. The device provided bilateral stimulations during a training program that involved ground-level gait training. After three training sessions, participants showed higher temporal symmetry when walking with the haptic feedback in comparison to their natural walking (resulting symmetry index increases of +2.8% for Subject IDA, +12.7% for Subject IDB and +2.9% for Subject IDC). One subject retained improved symmetry (Subject IDB, +14.9%) even when walking without the device. Gait analyses revealed that higher temporal symmetry may lead to concurrent compensation strategies in the trunk and pelvis. Overall, the results of this pilot study confirm the potential utility of sensory feedback devices to positively influence gait parameters when used in supervised settings. Future studies shall clarify more precisely the training modalities and the targets of rehabilitation programs with such devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.