The development and progression of osteoarthritis (OA) is associated with macrophage-mediated inflammation that generates a broad spectrum of cytokines and reactive oxygen species (ROS). This study investigates the effects of mid-MW hyaluronic acid (HA) in combination with a lactose-modified chitosan (CTL), on pro-inflammatory molecules and metalloproteinases (MMPs) expression, using an in vitro model of macrophage-mediated inflammation. Methods. To assess chondrocyte response to HA and CTL in the presence of macrophage derived inflammatory mediators, cells were exposed to the conditioned medium (CM) of U937 activated monocytes and changes in cell viability, pro-inflammatory mediators and MMPs expression or ROS generation were analysed. Results. CTL induced changes in chondrocyte viability that are reduced by the presence of HA. The CM of activated U937 monocytes (macrophages) significantly increased gene expression of pro-inflammatory molecules and MMPs and intracellular ROS generation in human chondrocyte cultures. HA, CTL and their combinations counteracted the oxidative damage and restored gene transcription for IL-1β, TNF-α, Gal-1, MMP-3 and MMP-13 to near baseline values. Conclusions. This study suggests that HA-CTL mixture attenuated macrophage-induced inflammation, inhibited MMPs expression and exhibited anti-oxidative effects. This evidence provides an initial step toward the development of an early stage OA therapeutic treatment
Inflammation and the accumulation of reactive oxygen species (ROS) play an important role in the structural and functional modifications leading to skin ageing. The reduction of inflammation, cellular oxidation and dermal extracellular matrix (ECM) alterations may prevent the ageing process. The aim of this study is to investigate the expression of pro-inflammatory markers and ECM molecules in human dermal fibroblasts derived from young and middle-aged women and the effects of lactose-modified chitosan (Chitlac®, CTL), alone or in combination with mid-MW hyaluronan (HA), using an in vitro model of inflammation. To assess the response of macrophage-induced inflamed dermal fibroblasts to HA and CTL, changes in cell viability, pro-inflammatory mediators, MMPs and ECM molecules expression and intracellular ROS generation are analysed at gene and protein levels. The expression of pro-inflammatory markers, galectins, MMP-3 and ECM molecules is age-related. CTL, HA and their combination counteracted the oxidative damage, stimulating the expression of ECM molecules, and, when added to inflamed cells, restored the baseline levels of IL-1β, TNF-α, GAL-1, GAL-3 and MMP-3. In conclusion, HA and CTL mixture attenuated the macrophage-induced inflammation, inhibited the MMP-3 expression, exhibited the anti-oxidative effects and exerted a pro-regenerative effect on ECM.
The clinical evidence for the success
of tyrosine kinase inhibitors in combination with microtubule-targeting
agents prompted us to design and develop single agents that possess
both epidermal growth factor receptor (EGFR) kinase and tubulin polymerization
inhibitory properties. A series of 6-aryl/heteroaryl-4-(3′,4′,5′-trimethoxyanilino)thieno[3,2-d]pyrimidine derivatives were discovered as novel dual tubulin
polymerization and EGFR kinase inhibitors. The 4-(3′,4′,5′-trimethoxyanilino)-6-(p-tolyl)thieno[3,2-d]pyrimidine derivative 6g was the most potent compound of the series as an antiproliferative
agent, with half-maximal inhibitory concentration (IC50) values in the single- or double-digit nanomolar range. Compound 6g
bound to tubulin in the colchicine
site and inhibited tubulin assembly with an IC50 value
of 0.71 μM, and 6g inhibited EGFR activity with
an IC50 value of 30 nM. Our data suggested that the excellent
in vitro and in vivo profile of 6g may be derived from
its dual inhibition of tubulin polymerization and EGFR kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.