Cyanobacteria are a rich source of bioactive compounds, mainly in the Arthospira sp., and one of the most interesting components in recent years has been C-phycocyanin (C-PC). There have been several conventional methods for their extraction, among which stand out: chemical products, freezing-thawing (FT); enzymatic, and maceration (M); which have come to be replaced by more environmentally friendly methods, such as those assisted by microwaves (MW) and high-pressure homogenization (HPH). The aim of the research was to use these two “green extraction processes” to obtain C-PC from cyanobacteria Arthrospira maxima because they improve functionality and are fast. Extractions of C-PC were studied by means of two experimental designs for MW and HPH, based on a response surface methodology (RSM) employing, firstly, a factorial design 33: power (100, 200, and 300 W), time (15, 30, and 60 s), and types of solvents (distiller water, Na-phosphate buffer and, distiller water: Na-phosphate buffer (Ph 7.0; 1:1, v/v); and secondly, two factors with different levels: Pressure (800, 1000, 1200, 1400, and 1600 bar) and, types of solvents (distilled water, Na-phosphate buffer (pH 7.0) 100 mM and, Na-phosphate buffer:water 1:1, (v/v)). Optimum C-PC content was achieved with the HPH process under Na-phosphate solvent at 1400 bar (291.9 ± 6.7 mg/g) and the MW method showed improved results using distilled water as a solvent at 100 W for 30 s (215.0 ± 5.5 mg/g). In the case of conventional methods, the freeze–thawing procedure reached better results than maceration using the buffer (225.6 ± 2.6 mg/g). This last one also did not show a significant difference between solvents (a range of 147.7–162.0 mg/g). Finally, the main advantage of using green extractions are the high C-PC yield achieved, effectively reducing both processing times, costs, and increasing the economic and functional applications of the bioactive compound.
A microalga, Isochrysis galbana, was chosen in this study for its potent natural antioxidant composition. A broad bioactive compounds spectrum such as carotenoids, fatty acid polyunsaturated (PUFA), and antioxidant activity are described with numerous functional properties. However, most of the optimization of extraction use toxic solvents or consume a lot of it becoming an environmental concern. In this research, a Box-Behnken design with desirability function was used to prospect the bioactive composition by supercritical fluid extraction (SFE) after performing the kinetics curve to obtain the optimal extraction time minimizing operational costs in the process. The parameters studied were: pressure (20–40 MPa), temperature (40–60 °C), and co-solvent (0–8% ethanol) with a CO2 flow rate of 7.2 g/min for 120 min. The response variables evaluated in I. galbana were extraction yield, carotenoids content and recovery, total phenols, antioxidant activity (TEAC method, trolox equivalents antioxidant capacity method), and fatty acid profile and content. In general, improvement in all variables was observed using an increase in ethanol concentration used as a co-solvent (8% v/v ethanol) high pressure (40 MPa), and moderately high temperature (50 °C). The fatty acids profile was rich in polyunsaturated fatty acid (PUFA) primarily linoleic acid (C18:2) and linolenic acid (C18:3). Therefore, I. galbana extracts obtained by supercritical fluid extraction showed relevant functional ingredients for use in food and nutraceutical industries.
Fucoxanthin was the carotenoid studied from the marine microalga Isochrysis galbana for its importance in preventing obesity and diabetes. In this manner, seven solvents were used to fucoxanthin extraction, highlighting methanol and ethanol with 6.282 and 4.187 mg/g, respectively. However, petroleum ether and n-hexane were the worst solvents for fucoxanthin extraction, obtaining approximately 12-folds less content. Extraction time was another relevant parameter in improve fucoxanthin extraction where 10 min was the best time reaching 7.464 mg/g under 100% ethanol. Finally, we propose the use of I. galbana as natural source of fucoxanthin, a bioactive compound usefulfor food industry.
Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce bioenergy through anaerobic digestion (AD) processes. Factors such as temperature (30 °C and 50 °C), pressure (20, 30, and 40 MPa), and ethanol (co-solvent concentration from 10% to 50% v/v) were optimized for improving the yield, purity, and recovery of fucoxanthin extracted using SFE. The highest yield (24.41% w/w) was obtained at 30 MPa, 30 °C, and 30% ethanol but the highest fucoxanthin purity and recovery (85.03mg/g extract and 66.60% w/w, respectively) were obtained at 30 MPa, 30 °C, and 40%ethanol. Furthermore, ethanol as a factor had the most significant effect on the overall process of SFE. Subsequently, P.tricornutum biomass and SFE-extracted diatom were used as substrates for biogas production through AD. The effect of fucoxanthin was studied on the yield of AD, which resulted in 77.15 ± 3.85 LSTP CH4/kg volatile solids (VS) and 56.66 ± 1.90 LSTP CH4/kg VS for the whole diatom and the extracted P.tricornutum, respectively. Therefore, P.tricornutuman can be considered a potential source of fucoxanthin and methane and both productions will contribute to the sustainability of the algae-biorefinery processes.
Microalgae grow in diverse environments and possess a great biotechnological potential as they contain useful bioactive compounds. These bioactive compounds can be obtained by selective and energy-efficient extraction methods. Various industries are using the supercritical fluid extraction (SFE) method to extract these valuable bioactive compounds. Hence, for the first time, we evaluated the effects of SFE on the recovery of bioactive and antioxidant compounds using Coccomyxa onubensis, a eukaryotic acidophilic microalga of potential relevance which can be used in the field of nutraceutical and functional foods. It was isolated from the Tinto River (Pyritic Belt, Huelva, Spain), a mining region in Spain. Variables such as extraction yield, lutein purity (LP) and recovery (LR), total phenols, and antioxidant capacity (Trolox equivalents antioxidant capacity method) were studied using a Box–Behnken design based on a response surface methodology along with the overall extraction curve fitted to a spline linear model. The effects of temperature (30, 50, and 70 °C), pressure (25, 40, and 55 MPa), and the percentage of co-solvent (0, 25%, and 50% v/v ethanol) on SFE were analyzed, resulting in the co-solvent and temperature as the most significant factors followed by the pressure. Under 70 °C, 40 MPa, and 50% v/v ethanol, C. onubensis reached a maximum of 66.98% of LR. The extracts were richest in total phenols and showed the maximum antioxidant activity (36.08 mg GAEs/g extracts and 2.237 mmol TE/g extracts, respectively) under similar pressure and co-solvent percentage values and different temperatures (30 and 70 °C, respectively). The extracts obtained in this study may have potential applications in the food, nutraceutical, and cosmetic industries. SFE is a highly efficient method to valorize microorganisms living in extreme environments, which are so far unexplored using green extraction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.