Anosognosia for hemiplegia (AHP) is a complex syndrome whose neural correlates are still under investigation. One hypothesis, mainly based on lesion mapping studies, is that AHP reflects a breakdown of neural systems of the right hemisphere involved in motor function. However, more recent theories have suggested that AHP may represent a disorder of cognitive systems involved in belief updating, self-referential or body processing. Two recent studies, using a method to estimate the degree of white matter disconnection from lesions, have indeed shown that patients with AHP suffer from damage of several long-range white matter pathways in association cortex. Here, we use a similar indirect disconnection approach to study a group of patients with motor deficits without anosognosia (hemiparesis or hemiplegia, HP, n = 35), or motor deficits with AHP (n = 28). The HP lesions came from a database of stroke patients, while cases of AHP were selected from the published literature. Lesions were traced into an atlas from illustrations of the publications using a standard method. There was no region in the brain that was more damaged in AHP than HP. In terms of structural connectivity, AHP patients had a similar pattern of disconnection of motor pathways to HP patients. However, AHP patients also showed significant disconnection of the right temporoparietal junction, right insula, right lateral and medial prefrontal cortex. These associative cortical regions were connected through several white matter tracts, including superior longitudinal fasciculus III, arcuate, fronto-insular, frontal inferior longitudinal, and frontal aslant. These tracts connected regions of different cognitive networks: default, ventral attention, and cingulo-opercular. These results were not controlled for clinical variables as concomitant symptoms and other disorders of body representation were not always available for co-variate analysis. In conclusion, we confirm recent studies of disconnection demonstrating that AHP is not limited to dysfunction of motor systems, but involves a much wider set of large-scale cortical networks.
Neurological deficits following stroke are traditionally described as syndromes related to damage of a specific area or vascular territory. Recent studies indicate that, at the population level, post-stroke neurological impairments cluster in three sets of correlated deficits across different behavioral domains. To examine the reproducibility and specificity of this structure, we prospectively studied first-time stroke patients (n = 237) using a bedside, clinically applicable, neuropsychological assessment and compared the behavioral and anatomical results with those obtained from a different prospective cohort studied with an extensive neuropsychological battery. The behavioral assessment at one-week post stroke included the Oxford Cognitive Screen (OCS) and the National Institutes of Health Stroke Scale (NIHSS). A principal component analysis was used to reduce variables and describe behavioral variance across patients. Lesions were manually segmented on structural scans. The relationship between anatomy and behavior was analyzed using multivariate regression models. Three principal components (PC) explained ≈50% of the behavioral variance across subjects. PC1 loaded on language, calculation, praxis, right side neglect, and memory deficits; PC2 loaded on left motor, visual, and spatial neglect deficits; PC3 loaded on right motor deficits. These components matched those obtained with a more extensive battery. The underlying lesion anatomy was also similar. Neurological deficits following stroke are correlated in a low dimensional structure of impairment, related neither to the damage of a specific area or vascular territory. Rather they reflect widespread network impairment caused by focal lesions. These factors showed consistency across different populations, neurobehavioral batteries and, most importantly, can be described using a combination of clinically applicable batteries (NIHSS and OCS). They represent robust behavioral biomarkers for future stroke population studies.
Assessment of impaired/preserved cortical regions in brain tumours is typically performed via intraoperative direct brain stimulation of eloquent areas or task-based functional MRI. One main limitation is that they overlook distal brain regions or networks that could be functionally impaired by the tumour. This study aims: 1) to investigate the impact of brain tumours on the cortical synchronization of brain networks measured with resting-state functional magnetic resonance imaging (resting-state networks) both near the lesion and remotely; 2) to test whether potential changes in resting state networks correlate with cognitive status. The sample included twenty-four glioma patients (mean age 58.1 ± 16.4y) with different pathological staging. We developed a new method for single subject localization of resting state networks abnormalities. First, we derived the spatial pattern of the main resting state networks by means of the group guided independent component analysis. This was informed by a high-resolution resting state networks template derived from an independent sample of healthy controls. Second, we developed a spatial similarity index to measure differences in network topography and strength between healthy controls and individual brain tumour patients. Next, we investigated the spatial relationship between altered networks and tumour location. Finally, multivariate analyses related cognitive scores across multiple cognitive domains (attention, language, memory, decision making) with patterns of multi-network abnormality. We found that brain gliomas cause broad alterations of resting state networks topography that occurred mainly in structurally normal regions outside the tumour and oedema region. Cortical regions near the tumour often showed normal synchronization. Finally, multi-network abnormalities predicted attention deficits. Overall, we present a novel method for the functional localization of resting state networks abnormalities in individual glioma patients. These abnormalities partially explain cognitive disabilities and shall be carefully navigated during surgery.
Objective: Prader-Willi syndrome (PWS) is a rare genetic neuroendocrine disorder characterized by hypotonia, obesity, short stature, and mental retardation. Incomplete or delayed pubertal development as well as premature adrenarche are usually found in PWS, whereas central precocious puberty is rarely seen. Methods: This study reports the clinical, biochemical, and histologic findings in 2 boys with PWS who developed central precocious puberty. Results: Both boys were started on growth hormone therapy during the first years of life according to the PWS indication. They had both bilateral cryptorchidism at birth and had orchidopexy in early childhood. Retrospective histologic analysis of testicular biopsies demonstrated largely normal tissue architecture and germ cell maturation, but severely decreased number of prespermatogonia in one of the patients. Both boys had premature adrenarche around the age of 6. Precocious puberty was diagnosed in both boys with enlargement of testicular volume (>3 mL), signs of virilization and a pubertal response to a gonadotropin-releasing hormone (GnRH) test and they were both treated with GnRH analog. Conclusion: The cases described here displayed typical characteristics for PWS, a considerable heterogeneity of the hypothalamic-pituitary function, as well as testicular histology. Central precocious puberty is extremely rare in PWS boys, but growth hormone treatment may play a role in the pubertal timing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.