Creatine transporter deficit (CT1) is an inherited metabolic disorder that causes mental retardation, epilepsy, speech, language and behavioral deficits. Until now, no treatment has been proven to be successful for this condition. We describe 1-year follow-up study of a child, aged 9.6 years, with CT1 defect, on oral supplementation with L-arginine, a precursor of creatine synthesis. Under supplementation, he showed a noticeable improvement of neurological, language and behavioral status and an increase of brain creatine and phosphocreatine documented with magnetic resonance spectroscopy. The results suggest that children with CT1 disorder show some residual adaptive plasticity for certain functions even at quite an advanced age. Further trials with higher L-arginine dosages and more protracted treatment are encouraged.
Localization of the follicle-stimulating hormone (FSH) molecule and its receptor (FSHR), as well as the role of FSH in Sertoli cell mitosis and maturation, has been demonstrated by several investigators in human and murine testis by detecting the localization of anti-FSH antibodies or [(131)I]-labeled FSH and by detecting FSH receptor (FSHR) mRNA by in situ hybridization, or FSHR by anti-FSHR antibodies. The presence of FSH in germinal cells is controversial or, in humans, excluded. We have investigated the distribution of the human FSH molecule and its receptor in human and mouse testicular cells under different experimental conditions, at the submicroscopical level, by using a better antigenicity conservative procedure. Thus, the distribution of FSH and of the messenger RNA for its receptor in Sertoli cells has now been clarified. In germinal cells, our observations demonstrate the presence of FSH and the FSHR mRNA: the first on the plasma membrane and in endocytotic vesicles, and the second scattered in the cytoplasm. The cells presenting the higher amount of positivity ranged from spermatogonia to spermatocytes, including round spermatids. Penetration was by the endocytosis via membrane vesicles in which the FSHR is present, whereas its messenger is largely present in the cytoplasm and is responsible for the binding and subsequent internalization of the FSH molecule. As a control, human FSH was administered in vitro to the Y1 mouse cell line, which was stably transfected with cDNA for FSHR and devoid of endogenous FSH. The FSH molecule has been localized by monoclonal antibodies on plasma membranes and vesicles, and the FSHR mRNA was found scattered in the cytoplasm after in situ hybridization. We can now conclude that FSH is present in Sertoli cells and in round germinal cells, both expressing the FSHR. FSH penetrates in a similar way in both kinds of cells via endocytosis, and is therefore subsequently localized in the same membranous organelles.
A study was performed on the delayed diagnosis of cystic fibrosis (CF) in infants who had false‐negative results in a neonatal screening programme. The genetic and clinical features of false‐negative infants in this screening programme were assessed together with the efficiency of the screening procedure in the Lombardia region. In total, 774 687 newborns were screened using a two‐step immunoreactive trypsinogen (IRT) (in the years 1990–1992), IRT/IRT + delF508 (1993–1998) or IRT/IRT + polymerase chain reaction (PCR) and oligonucleotide ligation assay (OLA) protocol (1998–1999). Out of 196 CF children born in the 10y period 15 were false negative on screening (7.6%) and molecular analysis showed a high variability in the genotypes. The cystic fibrosis transmembrane regulator (CFTR) gene mutations identified were delF508, D1152H, R1066C, R334W, G542X, N1303K, F1052V, A120T, 3849 + 10kbC → T, 2789 + 5G → A, 5T‐12TG and the novel mutation D110E. In three patients no mutation was identified after denaturing gradient gel electrophoresis of the majority of CFTR gene exons. Conclusion: The clinical phenotypes of CF children diagnosed by their symptoms at different ages were very mild. None of them presented with a severe lung disease. The majority of them did not seem to have been damaged by the delayed diagnosis. The combination of IRT assay plus genotype analysis (1998‐1999) appears to be a more reliable method of detecting CF than IRT measurement alone or combined with only the delF508 mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.