No sooner, it seems, had our first book Analysing Ecological Data gone to print, than we embarked on the writing of the nearly 600 page text you are now holding. This proved to be a labour of love of sorts-we felt that there were certain issues sufficiently common in the analysis of ecological data that merited more detailed description and analysis. Thus the present book can be seen as a 'sequel' to Analysing Ecological Data but with much greater emphasis on these very issues so commonly encountered in the collection of, and analysis of, ecological data. In particular, we look at different ways of analysing nested data, heterogeneity of variance, spatial and temporal correlation, and zero-inflated data. The original plan was to write a text of about 350 pages, but to do justice to the sheer range of problems and ideas we have well exceeded that original target (as you can see!). Such is the scope of applied statistics in ecology. In particular, partly on the back of reviewer's comments, we have included a chapter on Bayesian Monte-Carlo Markov-Chain applications in generalized linear modelling. We hope this serves as an informative introduction (but no more than an introduction!) to this interesting and increasingly relevant area of statistics. We received lots of positive feedback on the approach and style we used in Analysing Ecological Data, especially the combination of case studies and a theory section. We have therefore followed the same approach with this book. This time, however, we have provided the R code used for the analysis. Most of this R code is included in the text, but where the code was particularly long, it is only available from the book's website at www.highstat.com. In the case studies, we also included advice on what to write in a paper.
Summary1. While teaching statistics to ecologists, the lead authors of this paper have noticed common statistical problems. If a random sample of their work (including scientific papers) produced before doing these courses were selected, half would probably contain violations of the underlying assumptions of the statistical techniques employed. 2. Some violations have little impact on the results or ecological conclusions; yet others increase type I or type II errors, potentially resulting in wrong ecological conclusions. Most of these violations can be avoided by applying better data exploration. These problems are especially troublesome in applied ecology, where management and policy decisions are often at stake. 3. Here, we provide a protocol for data exploration; discuss current tools to detect outliers, heterogeneity of variance, collinearity, dependence of observations, problems with interactions, double zeros in multivariate analysis, zero inflation in generalized linear modelling, and the correct type of relationships between dependent and independent variables; and provide advice on how to address these problems when they arise. We also address misconceptions about normality, and provide advice on data transformations. 4. Data exploration avoids type I and type II errors, among other problems, thereby reducing the chance of making wrong ecological conclusions and poor recommendations. It is therefore essential for good quality management and policy based on statistical analyses.
Which test should I apply?' During the many years of working with ecologists, biologists and other environmental scientists, this is probably the question that the authors of this book hear the most often. The answer is always the same and along the lines of 'What are your underlying questions?', 'What do you want to show?'. The answers to these questions provide the starting point for a detailed discussion on the ecological background and purpose of the study. This then gives the basis for deciding on the most appropriate analytical approach. Therefore, a better starting point for an ecologist is to avoid the phrase 'test' and think in terms of 'analysis'. A test refers to something simple and unified that gives a clear answer in the form of a p-value: something rarely appropriate for ecological data. In practice, one has to apply a data exploration, check assumptions, validate the models, perhaps apply a series of methods, and most importantly, interpret the results in terms of the underlying ecology and the ecological questions being investigated. Ecology is a quantitative science trying to answer difficult questions about the complex world we live in. Most ecologists are aware of these complexities, but few are fully equipped with the statistical sophistication and understanding to deal with them. Even data gathered from apparently simple ecological research can require a level of statistical awareness rarely taught at the undergraduate or even the postgraduate level. There is little enough time to teach the essentials of ecology, let alone finding the time to teach 'advanced' statistics. Hopefully, for post graduates moving into academia there will be some advanced statistical support available, but many ecologist end up working in government, a voluntary organisation or consultancy where statistical support is minimal. Although, the authors of this book believe that a quantitative approach is at the core of being a good ecologist, they also appreciate how challenging many ecologists find statistics. This book is therefore aimed at three levels of reader. At one level it is aimed at making ecologists aware of how important it is to design scientifically robust ecological experiments or monitoring programmes, and the importance of selecting the best analytical technique. For these readers we hope the book, in particular the case studies, will encourage them to develop their personal statistical skills, or convince them they need statistical support. On the next level it is aimed at the statistically literate ecologist, who may not be fully aware of the techniques we discuss, or when to use them. Hopefully, we have explained things well enough for these readers to feel confident enough to use some of the techniques we describe. Often these techniques are presented in a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.