Vertebrate members of the nuclear receptor NR5A subfamily, which includes steroidogenic factor 1 (SF-1) and liver receptor homolog 1 (LRH-1), regulate crucial aspects of development, endocrine homeostasis, and metabolism. Mouse LRH-1 is believed to be a ligand-independent transcription factor with a large and empty hydrophobic pocket. Here we present structural and biochemical data for three other NR5A members-mouse and human SF-1 and human LRH-1-which reveal that these receptors bind phosphatidyl inositol second messengers and that ligand binding is required for maximal activity. Evolutionary analysis of structure-function relationships across the SF-1/LRH-1 subfamily indicates that ligand binding is the ancestral state of NR5A receptors and was uniquely diminished or altered in the rodent LRH-1 lineage. We propose that phospholipids regulate gene expression by directly binding to NR5A nuclear receptors.
Motor proteins of the kinesin superfamily transport intracellular cargo along microtubules. Although different kinesin proteins share 30-50% amino-acid identity in their motor catalytic cores, some move to the plus end of microtubules whereas others travel in the opposite direction. Crystal structures of the catalytic cores of conventional kinesin (a plus-end-directed motor involved in organelle transport) and ncd (a minus-end-directed motor involved in chromosome segregation) are nearly identical; therefore, the structural basis for their opposite directions of movement is unknown. Here we show that the ncd 'neck' made up of 13 class-specific residues next to the superfamily-conserved catalytic core, is essential for minus-end-directed motility, as mutagenesis of these neck residues reverses the direction of ncd motion. By solving the 2.5 A structure of a functional ncd dimer, we show that the ncd neck (a coiled-coil) differs from the corresponding region in the kinesin neck (an interrupted beta-strand), although both necks interact with similar elements in the catalytic cores. The distinct neck architectures also confer different symmetries to the ncd and kinesin dimers and position these motors with appropriate directional bias on the microtubule.
Kinesin motors convert chemical energy from ATP hydrolysis into unidirectional movement. To understand how kinesin motors bind to and move along microtubules, we fit the atomic structure of the motor domain of Ncd (a kinesin motor involved in meiosis and mitosis) into three-dimensional density maps of Ncd-microtubule complexes calculated by cryo-electron microscopy and image analysis. The model reveals that Ncd shares an extensive interaction surface with the microtubule, and that a portion of the binding site involves loops that contain conserved residues. In the Ncd dimer, the microtubule-bound motor domain makes intimate contact with its partner head, which is dissociated from the microtubule. This head-head interaction may be important in positioning the dissociated head to take a step to the next binding site on the microtubule protofilament.
The orphan nuclear receptors SF-1 and LRH-1 are constitutively active, but it remains uncertain whether their activation is hormone dependent. We report the crystal structure of the LRH-1 ligand binding domain to 2.4 A resolution and find the receptor to be a monomer that adopts an active conformation with a large but empty hydrophobic pocket. Adding bulky side chains into this pocket resulted in full or greater activity suggesting that, while LRH-1 could accommodate potential ligands, these are dispensable for basal activity. Constitutive LRH-1 activity appears to be conferred by a distinct structural element consisting of an extended helix 2 that provides an additional layer to the canonical LBD fold. Mutating the conserved arginine in helix 2 reduced LRH-1 receptor activity and coregulator recruitment, consistent with the partial loss-of-function phenotype exhibited by an analogous SF-1 human mutant. These findings illustrate an alternative structural strategy for nuclear receptor stabilization in the absence of ligand binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.