Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback.
Climate warming is expected to enhance productivity and growth of woody plants, particularly in temperature-limited environments at the northernmost or uppermost limits of their distribution. However, this warming is spatially uneven and temporally variable, and the rise in temperatures differently affects biomes and growth forms. Here, applying a dendroecological approach with generalized additive mixed models, we analysed how the growth of shrubby junipers and coexisting trees (larch and pine species) responds to rising temperatures along a 5000-km latitudinal range including sites from the Polar, Alpine to the Mediterranean biomes. We hypothesize that, being more coupled to ground microclimate, junipers will be less influenced by atmospheric conditions and will less respond to the post-1950 climate warming than coexisting standing trees. Unexpectedly, shrub and tree growth forms revealed divergent growth trends in all the three biomes, with juniper performing better than trees at Mediterranean than at Polar and Alpine sites. The post-1980s decline of tree growth in Mediterranean sites might be induced by drought stress amplified by climate warming and did not affect junipers. We conclude that different but coexisting long-living growth forms can respond differently to the same climate factor and that, even in temperature-limited area, other drivers like the duration of snow cover might locally play a fundamental role on woody plants growth across Europe.
Common juniper (Juniperus communis L.) is by far the most widespread conifer in the world. However, tree-ring research dealing with this species is still scarce, mainly due to the difficulty in crossdating associated with the irregular stem shape with strip-bark growth form in older individuals and the high number of missing and wedging rings. Given that many different species of the same genus have been successfully used in tree-ring investigations and proved to be reliable climate proxies, this study aims to (i) test the possibility to successfully apply dendrochronological techniques on common juniper growing above the treeline and (ii) verify the climate sensitivity of the species with special regard to winter precipitation, a climatic factor that generally does not affect tree-ring growth in all Alpine high-elevation tree species. Almost 90 samples have been collected in three sites in the central and eastern Alps, all between 2100 and 2400 m in elevation. Despite cross-dating difficulties, we were able to build a reliable chronology for each site, each spanning over 200 years. Climate-growth relationships computed over the last century highlight that juniper growth is mainly controlled by the amount of winter precipitation. The high variability of the climate-growth associations among sites, corresponds well to the low spatial dependence of this meteorological factor. Fairly long chronologies and the presence of a significant precipitation signal open up the possibility to reconstruct past winter precipitation.
A variety of social, developmental, biological and genetic factors influence sexual orientation in males. Thus, several hypotheses have attempted to explain the sustenance of genetic factors that influence male homosexuality, despite decreased fecundity within the homosexuals. Kin selection, the existence of maternal effects and two forms of balancing selection, sexually antagonistic selection and overdominance, have been proposed as compensatory mechanisms for reduced homosexual fecundity. Here, we suggest that the empirical support for kin selection and maternal effects cannot account for the low universal frequency and stability of the distribution of homosexuals. To identify the responsible compensatory mechanism, we analyzed fecundity in 2,100 European female relatives, i.e., aunts and grandmothers, of either homosexual or heterosexual probands who were matched in terms of age, culture and sampling strategy. Female relatives were chosen to avoid the sampling bias of the fraternal birth order effect, which occurs when indirectly sampling mothers though their homosexual sons. We observed that the maternal aunts and grandmothers of homosexual probands were significantly more fecund compared with the maternal aunts and maternal grandmothers of the heterosexual probands. No difference in fecundity was observed in the paternal female lines (grandmothers or aunts) from either of the two proband groups. Moreover, due to the selective increase in maternal female fecundity, the total female fecundity was significantly higher in homosexual than heterosexual probands, thus compensating for the reduced fecundity of homosexuals. Altogether, these data support an X-linked multi-locus sexually antagonistic hypothesis rather than an autosomal multi-locus overdominance hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.