Titanosaurian sauropod dinosaurs were the most diverse and abundant large-bodied herbivores in the southern continents during the final 30 million years of the Mesozoic Era. Several titanosaur species are regarded as the most massive land-living animals yet discovered; nevertheless, nearly all of these giant titanosaurs are known only from very incomplete fossils, hindering a detailed understanding of their anatomy. Here we describe a new and gigantic titanosaur, Dreadnoughtus schrani, from Upper Cretaceous sediments in southern Patagonia, Argentina. Represented by approximately 70% of the postcranial skeleton, plus craniodental remains, Dreadnoughtus is the most complete giant titanosaur yet discovered, and provides new insight into the morphology and evolutionary history of these colossal animals. Furthermore, despite its estimated mass of about 59.3 metric tons, the bone histology of the Dreadnoughtus type specimen reveals that this individual was still growing at the time of death.
The modifications that occur on proteins in natural environments over time are not well studied, yet characterizing them is vital to correctly interpret sequence data recovered from fossils. The recently extinct moa (Dinornithidae) is an excellent candidate for investigating the preservation of proteins, their post-translational modifications (PTMs) and diagenetic alterations during degradation. Moa protein extracts were analysed using mass spectrometry, and peptides from collagen I, collagen II and collagen V were identified. We also identified biologically derived PTMs (i.e. methylation, di-methylation, alkylation, hydroxylation, fucosylation) on amino acids at locations consistent with extant proteins. In addition to these in vivo modifications, we detected novel modifications that are probably diagenetically derived. These include loss of hydroxylation/glutamic semialdehyde, carboxymethyllysine and peptide backbone cleavage, as well as previously noted deamidation. Moa collagen sequences and modifications provide a baseline by which to evaluate proteomic studies of other fossils, and a framework for defining the molecular relationship of moa to other closely related taxa.
RATIONALE:Much credence has been given in the paleoproteomic community to glutamine deamidation as a proxy for the age of proteins derived from fossil and subfossil material, and this modification has been invoked as a means for determining the endogeneity of molecules recovered from very old fossil specimens. METHODS: We re-evaluated the relationship between glutamine deamidation and geologic time by examining previously published data from five recent mass spectrometry studies of archeaological fossils. Deamidation values recovered for fossils were graphed against their reported chronologic age using WebPlotDigitizer. RESULTS: The experimental data that has been produced from fossil material to date show that the extent of glutamine deamidation does not correspond to the absolute age of the specimens being examined, but rather show extreme variation between specimens of similar age and taxonomic affinity. CONCLUSIONS: Because deamidation rates and levels can be greatly affected by numerous chemical and environmental factors, we propose that glutamine deamidation is better suited as an indicator of preservational quality and/or environmental conditions than a mark of the endogeneity or authenticity of ancient proteins.
Sequence data from biomolecules such as DNA and proteins, which provide critical information for evolutionary studies, have been assumed to be forever outside the reach of dinosaur paleontology. Proteins, which are predicted to have greater longevity than DNA, have been recovered from two nonavian dinosaurs, but these results remain controversial. For proteomic data derived from extinct Mesozoic organisms to reach their greatest potential for investigating questions of phylogeny and paleobiology, it must be shown that peptide sequences can be reliably and reproducibly obtained from fossils and that fragmentary sequences for ancient proteins can be increasingly expanded. To test the hypothesis that peptides can be repeatedly detected and validated from fossil tissues many millions of years old, we applied updated extraction methodology, high-resolution mass spectrometry, and bioinformatics analyses on a Brachylophosaurus canadensis specimen (MOR 2598) from which collagen I peptides were recovered in 2009. We recovered eight peptide sequences of collagen I: two identical to peptides recovered in 2009 and six new peptides. Phylogenetic analyses place the recovered sequences within basal archosauria. When only the new sequences are considered, B. canadensis is grouped more closely to crocodylians, but when all sequences (current and those reported in 2009) are analyzed, B. canadensis is placed more closely to basal birds. The data robustly support the hypothesis of an endogenous origin for these peptides, confirm the idea that peptides can survive in specimens tens of millions of years old, and bolster the validity of the 2009 study. Furthermore, the new data expand the coverage of B. canadensis collagen I (a 33.6% increase in collagen I alpha 1 and 116.7% in alpha 2). Finally, this study demonstrates the importance of reexamining previously studied specimens with updated methods and instrumentation, as we obtained roughly the same amount of sequence data as the previous study with substantially less sample material. Data are available via ProteomeXchange with identifier PXD005087.
Dinosaur fossils possessing integumentary appendages of various morphologies, interpreted as feathers, have greatly enhanced our understanding of the evolutionary link between birds and dinosaurs, as well as the origins of feathers and avian flight. In extant birds, the unique expression and amino acid composition of proteins in mature feathers have been shown to determine their biomechanical properties, such as hardness, resilience, and plasticity. Here, we provide molecular and ultrastructural evidence that the pennaceous feathers of the Jurassic nonavian dinosaur Anchiornis were composed of both feather β-keratins and α-keratins. This is significant, because mature feathers in extant birds are dominated by β-keratins, particularly in the barbs and barbules forming the vane. We confirm here that feathers were modified at both molecular and morphological levels to obtain the biomechanical properties for flight during the dinosaur–bird transition, and we show that the patterns and timing of adaptive change at the molecular level can be directly addressed in exceptionally preserved fossils in deep time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.