Abstract. Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4–11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.
Abstract. The 318 m thick lacustrine sediment record from Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities for the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments demonstrate their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.5-3.35 Myr BP, the vegetation at Lake El'gygytgyn, now an area of tundra was dominated by spruce-larch-fir-hemlock forests. After ca. 3.35 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental change took place ca. 3.31-3.28 Myr BP, corresponding to the Marine Isotope Stage (MIS) M2, when treeless tundra-and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.043-3.025, 2.935-2.912, and 2.719-2.698 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Peaks in observed green algae colonies (Botryococcus) around 2.53, 2.45, 2.32-2.305, 2.20 and 2.16-2.15 Myr BP suggest a spread of shallow water environments. A few intervals (i.e., 2.55-2.53, ca. 2.37, and 2.35-2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively shortterm climate ameliorations during Early Pleistocene glacial periods.
Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns.
This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra-and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae~16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared~15.9 cal. ka BP, and became dominant after~15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after~13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum~11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant~11.8-11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between~10.6 and 7 cal. ka BP. Vegetation became similar to the modern after~7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.