There are various methods and practical examples to determine and to evaluate the production quality level. They include measuring, sensory, calculation, data-recording, sociological and expert methods. Among the variety of general-purpose statistical methods, only seven of them are chosen, which are applied by different specialists. They allow timely detecting and showing the problems, revealing the main points to start with, and helping to distribute the efforts to effectively fulfill main tasks.
Modern professional standards in the field of engineering and computer graphics and industrial enterprises require from young specialists not only high level of technical training, but also confident use of modern computer-aided design systems in their work. In standards the changes demanding creation of the design documentation on the basis of three-dimensional models of a product are included.Three-dimensional modeling has become a benchmark for the supply of demonstration materials in the field of mechanical engineering. Computer graphics today has the tools to create almost any object, and for designers to reveal their creative and professional abilities. The article considers a complex approach to the preparation of graduates of specialty 15.05.01 "Design of technological machines and complexes" on the basis of the Magnitogorsk State Technical University named after G.I.Nosov with the use of computer graphics and integration into the educational process of various computer-aided design systems: KOMPAS-3D, AutoCAD, Autodesk Inventor, APM WinMachine.
One of the promising areas of software development is the modeling of shapes of various objects with graphical representation of the process itself. The relevance of creation of such systems is first and foremost substantiated by providing a potential user with opportunity to visualize the process of shaping the object under the influence of external factors. Such software modules are highly demanded in such fields as modeling of deformation of a steel ingot in manufacturing rolled steel, prediction of occurrence of defects caused by external influence upon objects of various shape, as well as visualization of work of technical equipment related to external impact upon the object, which changes its shape as a result of applied forces. Elaboration of such systems allows inventing emulators that are demanded in educational institutions, as they replace expensive equipment for training practical skills of the students. For example, in medical universities, such software and hardware systems can be used for acquiring practical skills of working with medical equipment, like installation of ultrasonography. The standard training process for carrying out ultrasound examination in a medical university consists of two stages: theoretical and practical. In the course of training, students are not allowed to use ultrasonography machine as many times to be able to acquire sufficient skills in working with medical equipment. Therefore, it is relevant to develop an assistant robotic system for training, which would serve as an emulator of an actual ultrasonography equipment. The first stage of implementation of such project is the development of a specialized software product that would allow visualizing the image of human organs in 3D format with an option of scaling, rotation and deformation, which occurs due to application of pressure on soft tissues using special joystick during ultrasonography examination.
This article reviews the experience of application of VR-AR technologies (virtual and augmented reality technologies) for visual demonstration of production facilities in the process of engineering and operation. The three-dimensional modeling in CAD systems is commonly used as a means for development of construction documentation, visualization of work at different stages of engineering, and preparation of objects for engineering analysis. The authors believe that the use of AR-solutions not in parallel, but along with modern CAD systems for solution of engineering and design problems would allow avoiding design flaws and simplify the process of demonstration of projects. Based on the blueprints and three-dimensional models of the parts and assembly of two-stage reduction gear used for lifting a thermal furnace in metallurgical production, within the framework of development of the Unity multimedia application is developed the AR application for visual demonstration of the device. As the guide mark for visualization is selected the assembly drawing of the reduction gear in digital graphical format edited in the Vuforia portal. The guide mark database is imported into the Unity environment, the logic of implementation of the technique for demonstrating the assembly of the device and separate parts is written in script program. The application is installed on a smartphone and tested; pointing the camera at the printed assembly drawing allows seeing the 3D model of the reduction gear from different angles, hide any details and scrutinize the device. The AR-applications developed according to the proposed method can be used in the process of training operational personnel, which would improve the performance and quality of work during installation and maintenance of industrial facilities, as well as for displaying the projects during exhibitions and presentations of new products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.