Saffron is the dried stigmas of and is the most expensive spice in the world. Its red color is due to crocins, which are apocarotenoid glycosides that accumulate in the vacuole to a level up to 10% of the stigma dry weight. Previously, we characterized the first dedicated enzyme in the crocin biosynthetic pathway, carotenoid cleavage dioxygenase2 (CsCCD2), which cleaves zeaxanthin to yield crocetin dialdehyde. In this work, we identified six putative () genes expressed in stigmas. Heterologous expression in showed that only one of corresponding proteins (CsALDH3I1) was able to convert crocetin dialdehyde into the crocin precursor crocetin. CsALDH3I1 carries a carboxyl-terminal hydrophobic domain, similar to that of the membrane-associated apocarotenoid dehydrogenase YLO-1. We also characterized the UDP-glycosyltransferase CsUGT74AD1, which converts crocetin to crocins 1 and 2'. In vitro assays revealed high specificity of CsALDH3I1 for crocetin dialdehyde and long-chain apocarotenals and of CsUGT74AD1 for crocetin. Following extract fractionation, CsCCD2, CsALDH3I1, and CsUGT74AD1 were found in the insoluble fraction, suggesting their association with membranes or large insoluble complexes. Analysis of protein localization in both stigmas and following transgene expression in leaves revealed that CsCCD2, CsALDH3I, and CsUGT74AD1 were localized to the plastids, the endoplasmic reticulum, and the cytoplasm, respectively, in association with cytoskeleton-like structures. Based on these findings and current literature, we propose that the endoplasmic reticulum and cytoplasm function as transit centers for metabolites whose biosynthesis starts in the plastid and are accumulated in the vacuole.
Biomaterials to be used as cell delivery systems for cardiac tissue engineering should be able to comply with cardiac muscle contractile activity, while favoring cell survival and neo-angiogenesis in a hostile environment. Biocompatible synthetic materials can be tailored to mimic cardiac tissue three-dimensional organization in the micro- and nanoscales. Nonetheless, they usually display mechanical properties that are far from those of the native myocardium and thus could affect host cell survival and activity. In the present investigation, inert poly-ε-caprolactone planar layers were manufactured to change the surface stiffness (with Young's modulus ranging from 1 to 133 MPa) without changing matrix chemistry. These substrates were challenged with neonatal murine cardiomyocytes to study the possible effect of substrate stiffness on such cell behavior without changing biological cues. Interestingly, softer substrates (0.91±0.08 and 1.53±0.16 MPa) were found to harbor mostly mature cardiomyocytes having assembled sarcomeres, as shown by the expression of alpha actinin and myosin heavy chain in typical striations and the upregulation of sarcomeric actin mRNA. On the other hand, a preferential expression of immature cardiac cell genes (Nkx-2.5) and proteins (GATA-4) in cardiac cells grown onto stiffer materials (49.67±2.56 and 133.23±8.67 MPa) was detected. This result could not be ascribed to significant differences in cell adhesion or proliferation induced by the substrates, but to the stabilization of cardiomyocyte differentiated phenotype induced by softer layers. In fact, cardiac cell electromechanical coupling was shown to be more organized on softer surfaces, as highlighted by connexin 43 distribution. Moreover, a differential regulation of genes involved in extracellular matrix remodeling was detected on soft films (0.91±0.08 MPa) as compared with the stiffest (133.23±8.67 MPa). Finally, the upregulation of a number of genes involved in inflammatory processes was detected when the stiffest polymer is used. These events highlight the differences in cell mechanosensitivity in a heterogeneous cell preparation and are likely to contribute to the differences encountered in cardiac cell phenotype induced by substrate stiffness.
In order to investigate the constituents responsible for the enhancing effect of meat on intestinal iron absorption in humans, two different types of peptic digestion extracts were prepared from 100 g of beef, in which the thiol groups of the resulting peptides were either oxidized (CYS-), or left untreated (CYS+). The absorption of radioiron mixed with 250 g of maize was more than twofold greater when consumed along with the CYS+ extract than with the CYS- (p less than 0.05). It is suggested that the enhancing effect of meat on nonheme iron absorption is due to cysteine, and that cysteine-containing peptides, rather than the free amino acid, are responsible for this effect.
Annexin A1 (ANXA1) is a Ca 2C -binding protein overexpressed in the invasive stages of prostate cancer (PCa) development; however, its role in this tumor metastatization is largely unknown. Moreover, hypoxic conditions in solid tumors have been related to poor prognosis in PCa patients. We have previously demonstrated that ANXA1 is implicated in the acquisition of chemo-resistant features in DU145 PCa cells conferring them a mesenchymal/metastatic phenotype. In this study, we have investigated the mechanisms by which ANXA1 regulates metastatic behavior in LNCaP, DU145 and PC3 cells exposed to hypoxia. ANXA1 was differentially expressed by PCa cell lines in normoxia whereas hypoxic stimuli resulted in a significant increase of protein expression. Additionally, in low oxygen conditions ANXA1 was extensively secreted out-side the cells where its binding to formyl peptide receptors (FPRs) induced cell invasion. Loss and gain of function experiments performed by using the RNA interfering siANXA1 and an ANXA1 over-expressing plasmid (MF-ANXA1), also confirmed the leading role of the protein in modulating LNCaP, DU145 and PC3 cell invasiveness. Finally, ANXA1 played a crucial role in the regulation of cytoskeletal dynamics underlying metastatization process, such as the loss of adhesion molecules and the occurrence of the epithelial to mesenchymal transition (EMT). ANXA1 expression increased inversely to epithelial markers such as E-cadherin and cytokeratins 8 and 18 (CKs) and proportionally to mesenchymal ones such as vimentin, ezrin and moesin. Our results indicated that ANXA1 may be a key mediator of hypoxia-related metastasis-associated processes in PCa.
Crocus sativus stigmas are the main source of crocins, which are glucosylated apocarotenoids derived from zeaxanthin cleavage that give saffron its red color. Phytoene synthase (PSY) mediates the first committed step in carotenoid biosynthesis in plants. Four PSY genes encoding functional enzymes were isolated from saffron. All the proteins were localized in plastids, but the expression patterns of each gene, CsPSY1a , CsPSY1b , CsPSY2 , and CsPSY3 , in different saffron tissues and during the development of the stigma showed different tissue specialization. The CsPSY2 transcript was primarily detected in the stigmas where it activates and stimulates the accumulation of crocins, while its expression was very low in other tissues. In contrast, CsPSY1a and CsPSY1b were mainly expressed in the leaves, but only CsPSY1b showed stress-light regulation. Interestingly, CsPSY1b showed differential expression of two alternative splice variants, which differ in the intron retention at their 5′ UTRs, resulting in a reduction in their expression levels. In addition, the CsPSY1a and CsPSY1b transcripts, together with the CsPSY3 transcript, were induced in roots under different stress conditions. The CsPSY3 expression was high in the root tip, and its expression was associated with mycorrhizal colonization and strigolactone production. CsPSY3 formed a separate branch to the stress-specific Poaceae homologs but was closely related to the dicot PSY3 enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.