Whereas dendrimer supports are known as key parts of nanocatalysts, the capability of rigid dendrimers for this function has not yet been reported. Here, the study is focused on ferrocenylmethylenetriazolyl-terminated...
The molar heat capacity of the first-generation hybrid dendrimer with a “carbosilane core/phenylene shell” structure was measured for the first time in the temperature range T = 6–600 K using a precise adiabatic vacuum calorimeter and DSC. In the above temperature interval, the glass transition of the studied compound was observed, and its thermodynamic characteristics were determined. The standard thermodynamic functions (the enthalpy, the entropy, and the Gibbs energy) of the hybrid dendrimer were calculated over the range from T = 0 to 600 K using the experimentally determined heat capacity. The standard entropy of formation of the investigated dendrimer was evaluated at T = 298.15 K. The obtained thermodynamic properties of the studied hybrid dendrimer were compared and discussed with the literature data for some of the first-generation organosilicon and pyridylphenylene dendrimers.
The accuracy of coupled-cluster methods for the computation of core-valence correction to atomization energy was assessed. Truncation levels up to CCSDTQP were considered together with (aug-)cc-pwCVnZ (n = D, T, Q, 5) basis sets and three different extrapolation techniques (canonical and flexible Helgaker formula and Riemann zeta function extrapolation). With the exception of CCSD, a more accurate correction can be obtained from a larger basis set with a lower-level coupled-cluster method, and not vice versa. For the CCSD(T) level, it also implies faster computations with modern codes. We also discussed the importance of moving to higher-order or all-electron methods for geometry optimizations. The present study provides the general knowledge needed for the most accurate state-of-the-art computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.