Highlights d Development of the GLUT-1-3-selective inhibitor Glutor to suppress glucose uptake d Glutor potently induces cell death in 2D and 3D cancer cell culture d Glutor-induced hypoglycemia upregulates GLUT-1/-3 d Glutor and GLS inhibitor CB-839 synergistically inhibit cell growth
The principles guiding the design and synthesis of bioactive compounds based on natural product (NP) structure, such as biology-oriented synthesis (BIOS), are limited by their partial coverage of the NP-like chemical space of existing NPs and retainment of bioactivity in the corresponding compound collections. Here we propose and validate a concept to overcome these limitations by de novo combination of NP-derived fragments to structurally unprecedented 'pseudo natural products'. Pseudo NPs inherit characteristic elements of NP structure yet enable the efficient exploration of areas of chemical space not covered by NP-derived chemotypes, and may possess novel bioactivities. We provide a proof of principle by designing, synthesizing and investigating the biological properties of chromopynone pseudo NPs that combine biosynthetically unrelated chromane- and tetrahydropyrimidinone NP fragments. We show that chromopynones define a glucose uptake inhibitor chemotype that selectively targets glucose transporters GLUT-1 and -3, inhibits cancer cell growth and promises to inspire new drug discovery programmes aimed at tumour metabolism.
Bioactive compound design based on natural product (NP) structure may be limited because of partial coverage of NP‐like chemical space and biological target space. These limitations can be overcome by combining NP‐centered strategies with fragment‐based compound design through combination of NP‐derived fragments to afford structurally unprecedented “pseudo‐natural products” (pseudo‐NPs). The design, synthesis, and biological evaluation of a collection of indomorphan pseudo‐NPs that combine biosynthetically unrelated indole‐ and morphan‐alkaloid fragments are described. Indomorphane derivative Glupin was identified as a potent inhibitor of glucose uptake by selectively targeting and upregulating glucose transporters GLUT‐1 and GLUT‐3. Glupin suppresses glycolysis, reduces the levels of glucose‐derived metabolites, and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT‐1 and GLUT‐3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.