In this paper we study the existence and the uniqueness of isoperimetric extremals of rotation on two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Euclidean space. We find the new form of their equations which is easier than results by S. G. Leiko. He introduced the notion of rotary diffeomorphisms. In this paper we propose a new proof of the fundamental equations of rotary mappings.
In the present paper, we consider a five-dimensional Riemannian manifold with an irreducible SO(3)-structure as an example of an abstract statistical manifold. We prove that if a five-dimensional Riemannian manifold with an irreducible SO(3)-structure is a statistical manifold of constant curvature, then the metric of the Riemannian manifold is an Einstein metric. In addition, we show that a five-dimensional Euclidean sphere with an irreducible SO(3)-structure cannot be a conjugate symmetric statistical manifold. Finally, we show some results for a five-dimensional Riemannian manifold with a nearly integrable SO(3)-structure. For example, we prove that the structure tensor of a nearly integrable SO(3)-structure on a five-dimensional Riemannian manifold is a harmonic symmetric tensor and it defines the first integral of third order of the equations of geodesics. Moreover, we consider some topological properties of five-dimensional compact and conformally flat Riemannian manifolds with irreducible SO(3)-structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.