Despite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands. 5-FU treatment-resistant cells show a de novo expression of pyruvate kinase M1 (PKM1) and repression of PKM2, correlating with repression of the pentose phosphate pathway, decrease in NADPH level and in antioxidant defenses, promoting PKM2 oxidation and acquisition of stem-like phenotype. Response to 5-FU in a xenotransplantation model of human colon cancer confirms activation of mitochondrial function. Combined treatment with 5-FU and a pharmacological inhibitor of OXPHOS abolished the spherogenic potential of colon cancer cells and diminished the expression of stem-like markers. These findings suggest that inhibition of OXPHOS in combination with 5-FU is a rational combination strategy to achieve durable treatment response in colon cancer.
Mutational activation of ras genes is required for the onset and maintenance of different malignancies. Here we show, using a combination of molecular physiology, nutritional perturbations and transcriptional profiling, that full penetrance of phenotypes related to oncogenic Ras activation, including the shift of carbon metabolism towards fermentation and upregulation of key cell cycle regulators, is dependent upon glucose availability. These responses are induced by Ras activation, being specifically reverted by downregulation of the Ras pathway obtained through the expression of a dominant-negative Rasspecific guanine nucleotide exchange protein. Our data allow to link directly to ras activation the alteration in energy metabolism of cancer cells, their fragility towards glucose shortage and ensuing apoptotic death.
By combining in the same molecule Ras-interacting aromatic moieties and a sugar, we prepared a water-soluble Ras ligand that binds Ras and inhibits guanine nucleotide exchange. With this compound it was possible to determine experimentally by a (15)N-edited HSQC NMR experiment the ligand-Ras binding interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.