Low‐density polyethylene/layered double hydroxide (LDPE/LDH) nanocomposites were prepared via melt extrusion using organo‐LDH particles and maleic anhydride functionalized polyethylene as compatibilizer. Processing parameters, preparation method, and feed composition were properly modulated until obtaining nanocomposites with intercalated/exfoliated morphologies, and an uniform distribution of nanolayers, as evidenced by X‐ray diffraction and transmission electron microscopy analysis. These materials showed a significant improvement of the thermal‐oxidative stability, which increased of about 50°C during the first step of the degradation process. Moreover, a remarkable reduction of the oxygen permeability, proportional to the aspect ratio of LDH stacks dispersed in the polyolefin matrix was evidenced, indicating the possible application of nanocomposite films as food packaging materials. As highlighted by dynamic mechanical thermal analysis, interactions at the interface between LDH layers and polymer chains caused a shift of the LDPE β‐relaxation toward higher temperatures and a reduction of the peak intensity with respect to the matrix. It was also found that the storage modulus of the nanocomposites was lower in all the temperature range with respect to the reference samples. Finally, on‐line capillary rheometer measurements evidenced that the shear thinning behavior of the nanocomposites was dominated by the matrix so that the melt processability was not compromised by the presence of the filler. Copyright © 2010 John Wiley & Sons, Ltd.
PLA-based nanocomposites filled with the commercial organomodified montmorillonite Dellite 43B (D43B) and containing acetyl tri-n-butyl citrate (ATBC) as plasticizer were prepared by extrusion in a pilot-scale twin-screw extruder and melt casted into flexible films. A preliminary investigation was carried out in a laboratory batch mixer by varying blending conditions and addition procedures of the components. Indeed, the method of addition of ATBC and D43B considerably affected thermo-mechanical properties and morphology of the resultant nanocomposites. The simultaneous introduction of both ATBC and D43B during the extrusion process allowed producing clearly exfoliated nanocomposite materials with modulated mechanical and thermal properties. Moreover, rheological results, obtained during melt extrusion, assessed the processability of nanofilled-plasticized PLA, making this simple procedure interesting in view of the industrial production of nanostructured biomaterials based on plasticized PLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.