Predicting the outcome or the probability of winning a legal case has always been highly attractive in legal sciences and practice. Hardly any attempt has been made to predict the outcome of German cases, although prior court decisions become more and more important in various legal domains of Germany's jurisdiction, e.g., tax law. This paper summarizes our research on training a machine learning classifier to determine likelihood ratios and thus predict the outcome of a restricted set of cases from Germany's jurisdiction. Based on a data set of German tax law cases (44 285 documents from 1945 to 2016) we selected those cases which belong to an appeal decision (5 990 documents). We used the provided meta-data and natural language processing to extract 11 relevant features and trained a Naive Bayes classifier to predict whether an appeal is going to be successful or not. The evaluation (10-fold cross validation) on the data set has shown a performance regarding F 1-score between 0.53 and 0.58. This score indicates that there is room for improvement. We expect that the high relevancy for legal practice, the availability of data, and advance machine learning techniques will foster more research in this area.
Every time we buy something online, we are confronted with Terms of Services. However, only a few people actually read these terms, before accepting them, often to their disadvantage. In this paper, we present the SaToS browser plugin which summarises and simplifies Terms of Services from German webshops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.