The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10–25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.
BackgroundPseudomonas aeruginosa is a common pathogen causing hospital-acquired infections. Carbapenem resistance in P. aeruginosa is either mediated via a combination of efflux pumps, AmpC overexpression, and porin loss, or through an acquired carbapenemase. Carbapenemase-producing P. aeruginosa (CPPA) strains are known to cause outbreaks and harbour a reservoir of mobile antibiotic resistance genes, however, few molecular surveillance data is available. The aim of this study was to analyse the prevalence and epidemiology of CPPA in three German medical centres from 2015 to 2017.MethodsIdentification and susceptibility testing were performed with VITEK 2 system. P. aeruginosa non-susceptible to piperacillin, ceftazidime, cefepime, imipenem, meropenem and ciprofloxacin (4MRGN according to the German classification guideline) isolated from 2015 to 2017 were analysed. A two-step algorithm to detect carbapenemases was performed: phenotypic tests (EDTA- and cloxacillin-combined disk tests) followed by PCR, Sanger sequencing, and eventually whole genome sequencing. CPPA isolates were further genotyped by RAPD and PFGE. In-hospital transmission was investigated using conventional epidemiology.ResultsSixty two P. aeruginosa isolates were available for further analysis, of which 21 were CPPA as follows: blaVIM-1 (n = 2), blaVIM-2 (n = 17), blaNDM-1/blaGES-5 (n = 1) and the newly described blaIMP-82 (n = 1). CPPA were mostly hospital-acquired (71.4%) and isolated on intensive care units (66.7%). All (except one) were from the tertiary care centre. PFGE typing revealed one large cluster of VIM-2-producing CPPA containing 13 isolates. However, using conventional epidemiology, we were only able to confirm three patient-to-patient transmissions, and one room-to-patient transmission, on several intensive care units.ConclusionsThese data give insight into the epidemiology of CPPA in three centres in Germany over a period of 3 years. Carbapenemases are a relevant resistance mechanism in 4MRGN-P. aeruginosa, illustrated by genetically related VIM-2-producing strains that seem to be endemic in this region. Our data suggest that infection control measures should especially focus on controlling transmission on the ICU and support the need for a local molecular surveillance system.
Previous studies have demonstrated that vascular endothelial growth factor (VEGF) is upregulated in patients with hereditary hemorrhagic telangiectasia (HHT). The use of Bevacizumab as an anti-angiogenic treatment agent seems promising. The purpose of the present in vitro study was to determine the efficacy and potential toxicity levels of bevacizumab on cell proliferation and VEGF concentrations in endothelial cells of HHT patients. In this in vitro study, endothelial cells from patients with HHT and HUVECs (control) were incubated with different concentration levels of bevacizumab (2, 4, 6, 8 or 10 mg/ml). After 24, 48 or 72 h, the cell proliferation was assessed by Alamar Blue ® Assay and the VEGF levels in the cell culture supernatants were measured by VEGF-ELISA. All endothelial cells incubated with bevacizumab showed an initial decrease in cell proliferation. Cell proliferation recovered within 72 h in cell cultures incubated with concentration levels of up to 4 mg/ml bevacizumab, whereas those incubated with higher concentration levels showed a continuous decline in cell proliferation. VEGF expression decreased after 24 h in cell cultures incubated with bevacizumab concentration levels of 2 and 4 mg/ml but increased again after 48 h. Cell cultures incubated with bevacizumab concentration levels of 10 mg/ml showed a constant decline in VEGF expression without any tendency for recovery. Translating these results into daily clinical practice, the present study suggests that the intranasal submucosal injection of bevacizumab in HHT patients should not exceed a concentration level of 4 mg/ml. Overall, higher bevacizumab concentration levels not only reduce VEGF expression but pose a higher risk of toxic effects on endothelial cells as they jeopardize cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.