The adenosine A and A receptors belong to the purinergic family of G protein-coupled receptors, and regulate diverse functions of the cardiovascular, respiratory, renal, inflammation, and CNS. Xanthines such as caffeine and theophylline are weak, non-selective antagonists of adenosine receptors. Here we report the structure of a thermostabilized human A receptor at 3.3 Å resolution with PSB36, an A-selective xanthine-based antagonist. This is compared with structures of the A receptor with PSB36 (2.8 Å resolution), caffeine (2.1 Å), and theophylline (2.0 Å) to highlight features of ligand recognition which are common across xanthines. The structures of AR and AR were analyzed to identify the differences that are important selectivity determinants for xanthine ligands, and the role of T270 in AR (M270 in AR) in conferring selectivity was confirmed by mutagenesis. The structural differences confirmed to lead to selectivity can be utilized in the design of new subtype-selective AR or AR antagonists.
The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.
A considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further. In this review, we highlight the contributions of the Kinetics for Drug Discovery (K4DD) Consortium, which targets major open questions related to binding kinetics in an industry-driven public-private partnership.
TMC207 is a new antituberculous drug belonging to the diarylquinoline class which very efficiently inhibits the ATP synthase of mycobacteria such as Mycobacterium tuberculosis, one of the most important pathogens in the world. In order to map the amino acid residues involved in the binding of the drug, we have selected in vitro TMC207-resistant mutants from M. tuberculosis and diverse atypical mycobacteria. Six distinct mutations, Asp28¡Gly, Asp28¡Ala, Leu59¡Val, Glu61¡Asp, Ala63¡Pro, and Ile66¡Met, have been identified in the subunit c forming a C ring in the ATP synthase. They were studied by evaluating the levels of resistance that they confer in the selected clones and by using an isogenic complementation system in Mycobacterium smegmatis. The rates of increase of TMC207 MIC values (8-to 133-fold) were interpreted by constructing by homology modeling a structure of the mycobacterial C ring which was used for docking simulations with TMC207. Our results suggest that the residues found to be mutated in the resistant clones, together with a tyrosine specifically conserved at position 64 in mycobacteria, define a cleft located between two adjacent c subunits in the C ring. This cleft, which encompasses the proton-binding site (Glu61), is well fitted to bind TMC207 at the level of the bromoquinoline moiety, with the drug being anchored by several ionic, hydrogen, and halogen bonds with residues Glu61, Tyr64, and Asp28, respectively. These data shed light on the molecular interactions allowing TMC207 to bind specifically and efficiently at the level of the proton-binding site of the mycobacterial C ring.
Here we report an efficient method to generate multiple co-structures of the A2A G protein-coupled receptor (GPCR) with small-molecules from a single preparation of a thermostabilised receptor crystallised in Lipidic Cubic Phase (LCP). Receptor crystallisation is achieved following purification using a low affinity “carrier” ligand (theophylline) and crystals are then soaked in solutions containing the desired (higher affinity) compounds. Complete datasets to high resolution can then be collected from single crystals and seven structures are reported here of which three are novel. The method significantly improves structural throughput for ligand screening using stabilised GPCRs, thereby actively driving Structure-Based Drug Discovery (SBDD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.