Background: Spinal muscular atrophy (SMA) is a neuromuscular progressive disease, characterized by decreased amounts of survival motor neuron (SMN) protein, due to an autosomal recessive genetic defect. Despite recent research, there is still no cure. Nusinersen, an antisense oligonucleotide acting on the SMN2 gene, is intrathecally administered all life long, while onasemnogene abeparvovec-xioi, a gene therapy, is administered intravenously only once. Both therapies have proven efficacy, with best outcomes obtained when administered presymptomatically. In recent years, disease-modifying therapies such as nusinersen and onasemnogene abeparvovec-xioi have changed the natural history of SMA. Methods: We observed seven SMA type I patients, who received both therapies. We compared their motor function trajectories, ventilation hours and cough assist sessions to a control group of patients who received one therapy, in order to investigate whether combination therapy may be more effective than a single intervention alone. Results: Patients who received both therapies, compared to the monotherapy cohort, had the same motor function trajectory. Moreover, it was observed that the evolution of motor function was better in the 6 months following the first therapy than in the first 6 months after adding the second treatment. Conclusions: Our results suggest that early treatment is more important than combined therapy.
Our study objective was to construct models using 20 routine laboratory parameters on admission to predict disease severity and mortality risk in a group of 254 hospitalized COVID-19 patients. Considering the influence of confounding factors in this single-center study, we also retrospectively assessed the correlations between the risk of death and the routine laboratory parameters within individual comorbidity subgroups. In multivariate regression models and by ROC curve analysis, a model of three routine laboratory parameters (AUC 0.85; 95% CI: 0.79–0.91) and a model of six laboratory factors (AUC 0.86; 95% CI: 0.81–0.91) were able to predict severity and mortality of COVID-19, respectively, compared with any other individual parameter. Hierarchical cluster analysis showed that inflammatory laboratory markers grouped together in three distinct clusters including positive correlations: WBC with NEU, NEU with neutrophil-to-lymphocyte ratio (NLR), NEU with systemic immune-inflammation index (SII), NLR with SII and platelet-to-lymphocyte ratio (PLR) with SII. When analyzing the routine laboratory parameters in the subgroups of comorbidities, the risk of death was associated with a common set of laboratory markers of systemic inflammation. Our results have shown that a panel of several routine laboratory parameters recorded on admission could be helpful for early evaluation of the risk of disease severity and mortality in COVID-19 patients. Inflammatory markers for mortality risk were similar in the subgroups of comorbidities, suggesting the limited effect of confounding factors in predicting COVID-19 mortality at admission.
We evaluated in this cohort study the predictive ability of 23 peripheral blood parameters and ratios for treatment outcomes after the 2-month intensive phase in patients with PTB. In 63 patients out of 90 that turned culture negative, a significant decrease in white blood cell count, neutrophils, monocyte, hemoglobin, platelet, plateletcrit, erythrocyte sedimentation rate, MLR, NLR, PLR and SII values after anti-TB therapy compared to pretreatment was observed (p <0.001). Logistic regression analysis generated a model of predictors consisting of nine covariates. Spearman’s correlation analysis revealed significant positive correlations between NLR with NEU (r = 0.79, p<0.01), SII with NEU (r = 0.846, p<0.01), PLT with SII (r = 0.831, p<0.01), PLT with PCT (r = 0.71, p<0.01) and MPV with P-LCR (r = 0,897, p<0.01) in 63 patients out of 90 that turned culture negative after 2 months of treatment. ROC curve analysis indicated that all areas under the curve (AUC) revealed no statistically significant results, except lymphocyte for culture conversion. In summary, here we observed a set of hematological parameters that declined significantly as the disease was treated in patients that turned culture negative. Despite some limitations, our findings are useful for further studies aiming to identify hematological profiles that could predict the treatment outcome.
Introduction: Spinal muscular atrophy (SMA) is a progressive neurological disease with autosomal recessive transmission that affects motor neurons, causing their loss and resulting in muscle waste and motor deficiency. Nusinersen, the first SMN2 pre-mRNA targeted therapy approved by the Food and Drug Administration and the European Medicines Agency, has demonstrated high efficacy in improving motor function, as well as respiratory and nutritional statuses. Materials and Methods: We observed 55 patients (children/adolescents) diagnosed with spinal muscular atrophy (SMA), who received nusinersen therapy. To investigate the benefits of physical therapy on rehabilitation outcomes, we compared the motor evolution of patients who received nusinersen and performed daily physical therapy (study group) to those of the control group, who received only nusinersen therapy. Results: Motor skill improvements were statistically significantly (p < 0.001) higher in the study group, being almost four times better (12.66%), effect size, in comparison to the control group (3.18%). Conclusions: Physical therapy has provided superior results for those who receive it on a regular basis. These results include the correction of posture, reduction in stiffness, expansion of the range of motion and strengthening of muscles, thus allowing patients to do more movements and boosting their ability to perform everyday tasks.
Spinal muscular atrophy (SMA) is a spectrum of genetically and clinically heterogeneous diseases leading to the progressive degeneration of peripheric motor neurons with subsequent muscle weakness and atrophy. More than 95% of the cases of SMA are represented by homozygous mutations of the SMN1 gene (5q-SMA). Because this disease represents the leading cause of death due to a genetic cause and due to the availability of genetic therapies which can now save the life of the patient and stop the progress of the disease, early diagnosis is crucial. This report presents the case of a 13-year-old patient admitted to our hospital in 2018 who presented a phenotype typical to 5q-SMA. Next-generation sequencing (NGS) and Sanger sequencing of the SMN1 gene were performed, and a negative result was obtained. Consequently, we continued testing using whole-exome sequencing and discovered three mutations in the ASAH1 gene (one pathogenic and two variants of uncertain significance). Pathogenic mutations in the ASAH1 gene are responsible for spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and Farber disease, which overlapped with our patient’s phenotype. Currently, there are 45 SMA cases caused by mutations in the ASAH1 gene reported worldwide; however, the present case is the first reported in Romania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.