In this study, we investigated the antitumoral effects of combined treatment using sorafenib and capsaicin in hepatocellular carcinoma (HCC) cells. Here we showed that the combination of the two drugs had a much stronger inhibitory effect on both HepG2 and Huh-7 human HCC cells growth than either drug alone. The isobolograms demonstrated that the combinations investigated in this study produced a synergistic interaction. In the combination treatment using capsaicin and sorafenib, increased apoptosis, followed by the activation of caspase-9 and PARP, was observed. In addition, the present study demonstrated that sorafenib treatment induces activation of Akt, probably as a mechanism of resistance, whereas capsaicin inhibits Akt providing a possible pathway whereby capsaicin sensitizes to sorafenib in HCC cells. Moreover, capsaicin singly and the combination of capsaicin and sorafenib induce AMPK activation and Acetyl CoA carboxylase phosphorylation in HCC cells. Knocking down of AMPK by selective siRNA abrogates capsaicin-induced Akt inhibition, suggesting the involvement of AMPK in the antiproliferative effect. In vivo experiments further showed that that the anti-tumor effect of sorafenib was enhanced by its combination with 2.5 mg/Kg of capsaicin. Overall, these results show that combined treatment with capsaicin and sorafenib might improve sorafenib sensitivity and therefore it represents a promising and attractive strategy for the treatment of HCC.
Capsaicin is a natural compound present in chili and red peppers and the responsible of their spicy flavor. It has recently provoked interest because of its antitumoral effects in many cell types although its action mechanism is not clearly understood. As metabolic dysregulation is one of the hallmarks of cancer cells and the key metabolic sensor in the AMP-activated kinase (AMPK), in this study we explored the ability of capsaicin to modulate AMPK activity. We found that capsaicin activated AMPK in HepG2 cells by increasing AMPK phosphorylation and its downstream target ACC. Mechanistically, we determined that capsaicin activated AMPK through the calcium/calmodulin-dependent protein kinase kinase β, CaMKKβ as either the CaMKK inhibitor STO-609 or CaMKK knock down with siRNA abrogated the activation of AMPK. Moreover, capsaicin decreased cell viability, inhibited Akt/mTOR pathway and increased reactive oxygen species (ROS) in HepG2 cells. AMPK activation was involved in the underpinning mechanism of capsaicin-induced cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.