Inducible expression is a valuable approach for the elucidation of gene functions. Here, we present new configurations of the tetracycline-dependent gene regulation (tet) system for Staphylococcus aureus. To provide improved and expanded modes of control, strains and plasmids were constructed for the constitutive expression of tetR or a variant allele, rev-tetR r2 . The encoded regulators respond differently to the effector anhydrotetracycline (ATc), which causes target gene expression to be induced with TetR or repressed with rev-TetR. To quantify and compare regulation mediated by episomal or chromosomal (rev-)tetR constructs, expression from a chromosomal P xyl/tet -gfpmut2 fusion was measured. Chromosomally encoded TetR showed tight repression and allowed high levels of dose-dependent gene expression in response to ATc. Regulatory abilities were further verified using a strain in which a native S. aureus gene (zwf) was put under tet control in its native chromosomal location. Tight repression was reflected by transcript amounts, which were barely detectable under repressed conditions and high in ATc-treated cells. In reporter gene assays, this type of control, termed Tet-on, was more efficient than Tet-off regulation, in which addition of ATc causes downregulation of a target gene. The latter was achieved and quantified by direct rev-TetR control of P xyl/tet -gfpmut2. Additionally, TetR was used in trans to control the expression of antisense RNA for posttranscriptional gene silencing. Induction of antisense RNA expression of the fabI gene caused pronounced growth retardation lasting several hours. These results demonstrate the efficiency of the new tet systems and their flexible use for different purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.