This paper is oriented to the experimental research of the mechanics of the CFRP sandwich plates, glass and carbon fiber sample panels with a large-cell honeycomb core. The method for testing polymer composite sample plates in compression after impact (CAI) tests with joint use of a testing machine and a video system for deformation field registration was tested. Analysis of the experimental data obtained highlighted the impactive sensitivity zone for the test specimens. A quantitative assessment of the load-bearing capacity of glass and carbon fiber sample panels in CAI tests with the different levels of the drop weight impact energy was performed. Photos of samples after impact have been provided. Vic-3D non-contact three-dimensional digital optical system was used to register the displacement and deformation fields on the surface of the samples. The video system was used to evaluate various damage mechanisms, including matrix cracking, delaminations, and rupture of the damaged fibers. The paper studied the evolution of non-homogeneous deformation fields on the surface of the composite samples during the post-impact compression tests and analyzed the configuration of non-homogeneous deformation fields.
The paper analyses the numerical algorithms for experimental data processing using a contactless video system Vic-3D, designed for three-dimension analysis of displacement and strain fields, and digital image correlation method. The authors considered methodological issues of conducting an experiment using a video system. They suggested recommendations on the choice of parameters of calculation of correlation, the size of subset and step during the analysis of non-homogeneous displacement and strain fields in polymer composite materials through laminated fiberglass composite. The efficient parameters of mathematical data processing are identified according to digital image correlation method on the basis of building fields for one frame on the surface of laminated fiberglass reinforced plastic at various subset values and at fixed step value. The paper shows the impact of step value on the strain fields detail degree. The authors have identified the relation of the chosen parameters of experimental data processing using digital image correlation method with the scaled levels of consideration of composite materials strain processes. To evaluate the strains at various scale levels, the paper uses supplementary video system instruments: “virtual extensometer”, “rectangular area” and “line”. The authors obtained a longitudinal strain profile that allows evaluating the location of strain peak areas on the composite object surface.
This paper is devoted to the experimental study of polymeric composite specimens, with various types of reinforcement, in order to evaluate the breaking strength of specimens with open holes when undergoing uniaxial compression and tensile tests. Four types of interlaced 3D woven preforms were considered (orthogonal, orthogonal combined, with pairwise inter-layer reinforcement, and with pairwise inter-layer reinforcement and a longitudinal layer), with a layered preform used for comparison. Tensile tests of solid specimens without a hole, under ASTM D 3039, and of specimens with an open hole, under ASTM D 5766, were carried out using the Instron 5989 universal electromechanical testing system. Movements and strains on the specimen surface were recorded using a Vic-3D contactless optical video system and the digital images correlation method (DIC). For all the series of carbon fiber tension specimens, strain and stress diagrams, mechanical characteristics, and statistical processing for 10 specimens were obtained. The paper evaluated deformation fields for certain points in time; the obtained fields showed an irregular distribution of deformation and dependency on types of reinforcing fibers. A coefficient of strength variation is introduced, which is defined as a ratio of the ultimate stress limits obtained on solid samples with and without open holes. Within the framework of ASTM D 5766, when calculating the ultimate stress, the hole is not taken into account, and the paper shows that for certain structures a hole cannot be excluded. The hole size must not be neglected when calculating the ultimate stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.