As cancer-associated factors, kallikrein-related peptidases (KLKs) are components of the tumour microenvironment, which represents a rich substrate repertoire, and considered attractive targets for the development of novel treatments. Standard-of-care therapy of pancreatic cancer shows unsatisfactory results, indicating the need for alternative therapeutic approaches. We aimed to investigate the expression of KLKs in pancreatic cancer and to inhibit the function of KLK6 in pancreatic cancer cells. KLK6, KLK7, KLK8, KLK10 and KLK11 were coexpressed and upregulated in tissues from pancreatic cancer patients compared to normal pancreas. Their high expression levels correlated with each other and were linked to shorter survival compared to low KLK levels. We then validated KLK6 mRNA and protein expression in patient-derived tissues and pancreatic cancer cells. Coexpression of KLK6 with KRT19, αSMA or CD68 was independent of tumour stage, while KLK6 was coexpressed with KRT19 and CD68 in the invasive tumour area. High KLK6 levels in tumour and CD68+ cells were linked to shorter survival. KLK6 inhibition reduced KLK6 mRNA expression, cell metabolic activity and KLK6 secretion and increased the secretion of other serine and aspartic lysosomal proteases. The association of high KLK levels and poor prognosis suggests that inhibiting KLKs may be a therapeutic strategy for precision medicine.
Telomere shortening, a well-known biomarker of aging, is a complex process influenced by several intrinsic and lifestyle factors. Although habitual exercise may promote telomere length maintenance, extreme endurance exercise has been also associated with increased oxidative stress - presumed to be the major cause of telomere shortening. Therefore, the pace of telomere shortening with age may also depend on antioxidant system efficiency, which is in part genetically determined. In this study, we aimed at evaluating the impact of ultra-endurance exercise and oxidative stress susceptibility (determined by the rs4880 polymorphism in the superoxide dismutase 2 (SOD2) gene) on telomere length. Genomic DNA was obtained from 53 sedentary individuals (34 females, 19-67 years) and 96 ultra-trail runners (31 females, 23-58 years). Indeed, blood samples before and after finishing a 107km-trail race were collected from 32 runners to measure c-reactive protein (CRP) levels and thus analyse if acute inflammation response is modulated by the SOD2 rs4880 polymorphism. Our results revealed that telomere length was better preserved in ultra-trail runners compared to controls, especially in elderly runners who have been regularly training for many years. Carrying the SOD2 rs4880*A allele was significantly associated with having shorter telomeres, as well as with having increased CRP levels after the ultra-trail race. In conclusion, habitual ultra-endurance exercise had a beneficial effect on telomere length maintenance, especially at older ages. This study also suggested that the SOD2 rs4880 polymorphism may also impact on acute and chronic oxidative-related damage (inflammatory response and telomere length) after an ultra-trail race
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.