Tanacetum vulgare is an herbaceous plant widely used in folk medicine. It is rich in phenolic acids and flavonoids, which have pharmacological and medicinal properties, such as anthelmintic, antispasmodic, tonic, antidiabetic, diuretic, and antihypertensive. This study aimed to confirm the presence of biologically active substances in Tanacetum vulgare and to determine the pharmacological spectrum of biological activity of Tanacetum vulgare extract components. When preparing Tanacetum vulgare extracts, the highest yield was observed when using the maceration method with a mixture of solvents methanol + trifluoroacetic acid (22.65 ± 0.68%). The biologically active substances in Tanacetum vulgare extract samples were determined using high-performance liquid chromatography. Biologically active substances such as luteolin-7-glucoside (550.80 mg/kg), chlorogenic acid (5945.40 mg/kg), and rosmarinic acid (661.31 mg/kg) were identified. Their structures were determined. The experiments have confirmed the antioxidant and antibacterial activities. Secondary metabolites of Tanacetum vulgare extracts have been found to have previously unknown biological activity types; experimental confirmation of their existence will advance phytochemical research and lead to the development of new drugs.
Microalgae are rich in nutrients and biologically active substances such as proteins, carbohydrates, lipids, vitamins, pigments, phycobiliproteins, among others. The lipid composition of the microalgae Chlorella vulgaris, Arthrospira platensis, and Dunaliella salina was screened for the first time. The proposed method for purifying the lipid complex isolated from microalgae’s biomass involved dissolving the lipid-pigment complex in n-hexane for 4 h and stirring at 500 rpm. We found that the largest number of neutral lipids is contained in the biomass of microalgae Arthrospira platensis, fatty acids, polar lipids (glycerophospholipids), and unsaponifiable substances—in the biomass of microalgae Dunaliella salina, chlorophyll, and other impurities—in the biomass of microalgae Chlorella vulgaris. The developed method of purification of the fatty acid composition of the microalgae lipid complex confirmed the content of fatty acids in microalgae, which are of interest for practical use in the production of biologically active components. We also determined the potential of its use in the development of affordable technology for processing microalgae into valuable food and feed additives.
Microalgae are known to be rich in protein. In this study, we aim to investigate methods of producing and purifying proteins of 98 microalgae including Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, and Pleurochrysis carterae (Baltic Sea). Therefore, we studied their amino acid composition and developed a two-stage protein concentrate purification method from the microalgae biomass. After an additional stage of purification, the mass fraction of protein substances with a molecular weight greater than 50 kDa in the protein concentrate isolated from the biomass of the microalga Dunaliella salina increased by 2.58 times as compared with the mass fraction before filtration. In the protein concentrate isolated from the biomass of the microalga Pleurochrysis cartera, the relative content of the fraction with a molecular weight greater than 50.0 kDa reached 82.4%, which was 2.43 times higher than the relative content of the same fractions in the protein concentrate isolated from this culture before the two-stage purification. The possibilities of large-scale industrial production of microalgae biomass and an expanded range of uses determine the need to search for highly productive protein strains of microalgae and to optimize the conditions for isolating amino acids from them.
Background and Aim: In recent decades, the use of various feed supplements is the current trend in poultry farming, among which phytogenics serve as alternatives to feed antibiotics. This study aimed to examine the effect of feeding various doses of milk thistle extract (Silybum marianum) on the morphological and biochemical parameters of the blood in broiler chickens. Materials and Methods: Experiments were carried out in an industrial poultry farm on broiler chickens of the Hubbard ISA F15 cross for 40 days. One control group and five experimental groups of day-old chickens were formed. The number of birds in each group was 50. Broilers of all groups received complete feed, and the experimental groups received an additional milk thistle extract at doses of 0.1, 0.5, 1.0, 1.5, and 2.0 mg/kg of body weight. Milk thistle medicinal plant extract was obtained using water-ethanol extraction followed by low-temperature vacuum drying. For the assessment of blood analyses, samples were collected from the wing vein of six chickens per group. Using unified methods recommended by the International Federation of Clinical Chemistry, the content of red blood cells, hemoglobin, white blood cells, total protein, protein fractions, triglycerides, glucose, calcium, phosphorus, and the concentration of alanine aminotransferase and aspartate aminotransferase in the blood serum were determined. Results: It was found that the introduction of milk thistle extract into the diet of broiler chickens with the aforementioned doses increased the number of red blood cells, hemoglobin, white blood cells in the blood, as well as a decrease in the level of albumin and an increase in the content of γ-globulins in its serum. Conclusion: The authors assume that the introduction of milk thistle extract into a complete feed for broiler chickens increased the anabolic processes in their bodies, accompanied by increased use of proteins of the albumin fraction as the main material for organogenesis.
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.