Microalgae are a group of autotrophic microorganisms that live in marine, freshwater and soil ecosystems and produce organic substances in the process of photosynthesis. Due to their high metabolic flexibility, adaptation to various cultivation conditions as well as the possibility of rapid growth, the number of studies on their use as a source of biologically valuable products is growing rapidly. Currently, integrated technologies for the cultivation of microalgae aiming to isolate various biologically active substances from biomass to increase the profitability of algae production are being sought. To implement this kind of development, the high productivity of industrial cultivation systems must be accompanied by the ability to control the biosynthesis of biologically valuable compounds in conditions of intensive culture growth. The review considers the main factors (temperature, pH, component composition, etc.) that affect the biomass growth process and the biologically active substance synthesis in microalgae. The advantages and disadvantages of existing cultivation methods are outlined. An analysis of various methods for the isolation and overproduction of the main biologically active substances of microalgae (proteins, lipids, polysaccharides, pigments and vitamins) is presented and new technologies and approaches aimed at using microalgae as promising ingredients in value-added products are considered.
Microalgae are rich in nutrients and biologically active substances such as proteins, carbohydrates, lipids, vitamins, pigments, phycobiliproteins, among others. The lipid composition of the microalgae Chlorella vulgaris, Arthrospira platensis, and Dunaliella salina was screened for the first time. The proposed method for purifying the lipid complex isolated from microalgae’s biomass involved dissolving the lipid-pigment complex in n-hexane for 4 h and stirring at 500 rpm. We found that the largest number of neutral lipids is contained in the biomass of microalgae Arthrospira platensis, fatty acids, polar lipids (glycerophospholipids), and unsaponifiable substances—in the biomass of microalgae Dunaliella salina, chlorophyll, and other impurities—in the biomass of microalgae Chlorella vulgaris. The developed method of purification of the fatty acid composition of the microalgae lipid complex confirmed the content of fatty acids in microalgae, which are of interest for practical use in the production of biologically active components. We also determined the potential of its use in the development of affordable technology for processing microalgae into valuable food and feed additives.
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1–2 h at the extraction temperature of 25–40 °C. A 30–50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.