This work is concerned with thermodynamic properties of binary mixtures composed of 1-butyl-1-methylpyrrolidinium dicyanamide ionic liquid (IL) and the following molecular solvents: n-heptane, benzene, toluene, ethylbenzene, thiophene, 1-butanol, 1-hexanol, and 1-octanol. This is the very first time when experimental data on liquid-liquid equilibrium (LLE) phase diagrams and excess enthalpies of mixing (H(E)) for these systems are reported. An impact of the molecular solvent structure on LLE and H(E) is discussed. Furthermore, modeling of the properties under study is presented by using perturbed-chain statistical associating fluid theory (PC-SAFT). The equation of state is used in purely predictive and semipredictive mode. The latter one involves temperature-dependent binary corrections to combining rules employed in the PC-SAFT model determined on the basis of infinite dilution activity coefficients. The results shown indicate that such an approach can serve as an interesting modern thermodynamic tool for representation of thermodynamic data for complex ILs-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.