Farmers that intend to access Common Agricultural Policy (CAP) contributions must submit an application to the territorially competent Paying Agencies (PA). Agencies are called to verify consistency of CAP contributions requirements through ground campaigns. Recently, EU regulation (N. 746/2018) proposed an alternative methodology to control CAP applications based on Earth Observation data. Accordingly, this work was aimed at designing and implementing a prototype of service based on Copernicus Sentinel-2 (S2) data for the classification of soybean, corn, wheat, rice, and meadow crops. The approach relies on the classification of S2 NDVI time-series (TS) by “user-friendly” supervised classification algorithms: Minimum Distance (MD) and Random Forest (RF). The study area was located in the Vercelli province (NW Italy), which represents a strategic agricultural area in the Piemonte region. Crop classes separability proved to be a key factor during the classification process. Confusion matrices were generated with respect to ground checks (GCs); they showed a high Overall Accuracy (>80%) for both MD and RF approaches. With respect to MD and RF, a new raster layer was generated (hereinafter called Controls Map layer), mapping four levels of classification occurrences, useful for administrative procedures required by PA. The Control Map layer highlighted that only the eight percent of CAP 2019 applications appeared to be critical in terms of consistency between farmers’ declarations and classification results. Only for these ones, a GC was warmly suggested, while the 12% must be desirable and the 80% was not required. This information alone suggested that the proposed methodology is able to optimize GCs, making possible to focus ground checks on a limited number of fields, thus determining an economic saving for PA and/or a more effective strategy of controls.
Farmers are supported by European Union (EU) through contributions related to the common agricultural policy (CAP). To obtain grants, farmers have to apply every year according to the national/regional procedure that, presently, relies on the Geo-Spatial Aid Application (GSAA). To ensure the properness of applications, national/regional payment agencies (PA) operate random controls through in-field surveys. EU regulation n. 809/2014 has introduced a new approach to CAP controls based on Copernicus Sentinel-2 (S2) data. These are expected to better address PA checks on the field, suggesting eventual inconsistencies between satellite-based deductions and farmers’ declarations. Within this framework, this work proposed a hierarchical (HI) approach to the classification of crops (soya, corn, wheat, rice, and meadow) explicitly aimed at supporting CAP controls in agriculture, with special concerns about the Piemonte Region (NW Italy) agricultural situation. To demonstrate the effectiveness of the proposed approach, a comparison is made between HI and other, more ordinary approaches. In particular, two algorithms were considered as references: the minimum distance (MD) and the random forest (RF). Tests were operated in a study area located in the southern part of the Vercelli province (Piemonte), which is mainly devoted to agriculture. Training and validation steps were performed for all the classification approaches (HI, MD, RF) using the same ground data. MD and RF were based on S2-derived NDVI image time series (TS) for the 2020 year. Differently, HI was built according to a rule-based approach developing according to the following steps: (a) TS standard deviation analysis in the time domain for meadows mapping; (b) MD classification of winter part of TS in the time domain for wheat detection; (c) MD classification of summer part of TS in the time domain for corn classification; (d) selection of a proper summer multi-spectral image (SMSI) useful for separating rice from soya with MD operated in the spectral domain. To separate crops of interest from other classes, MD-based classifications belonging to HI were thresholded by Otsu’s method. Overall accuracy for MD, RF, and HI were found to be 63%, 80%, and 89%, respectively. It is worth remarking that thanks to the SMSI-based approach of HI, a significant improvement was obtained in soya and rice classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.