Evidence of executive dysfunction in autism spectrum disorders (ASD) across development remains mixed and establishing its role is critical for guiding diagnosis and intervention. The primary objectives of this meta-analysis is to analyse executive function (EF) performance in ASD, the fractionation across EF subdomains, the clinical utility of EF measures and the influence of multiple moderators (for example, age, gender, diagnosis, measure characteristics). The Embase, Medline and PsychINFO databases were searched to identify peer-reviewed studies published since the inclusion of Autism in DSM-III (1980) up to end of June 2016 that compared EF in ASD with neurotypical controls. A random-effects model was used and moderators were tested using subgroup analysis. The primary outcome measure was Hedges’ g effect size for EF and moderator factors. Clinical sensitivity was determined by the overlap percentage statistic (OL%). Results were reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A total of 235 studies comprising 14 081 participants were included (N, ASD=6816, Control=7265). A moderate overall effect size for reduced EF (Hedges’ g=0.48, 95% confidence interval (CI) 0.43–0.53) was found with similar effect sizes across each domain. The majority of moderator comparisons were not significant although the overall effect of executive dysfunction has gradually reduced since the introduction of ASD. Only a small number of EF measures achieved clinical sensitivity. This study confirms a broad executive dysfunction in ASD that is relatively stable across development. The fractionation of executive dysfunction into individual subdomains was not supported, nor was diagnostic sensitivity. Development of feasible EF measures focussing on clinical sensitivity for diagnosis and treatment studies should be a priority.
This review presents an outline of executive function (EF) and its application to autism spectrum disorder (ASD). The development of the EF construct, theoretical models of EF, and limitations in the study of EF are outlined. The potential of EF as a cognitive endophenotype for ASD is reviewed, and the Research Domain Criteria (RDoC) framework is discussed for researching EF in ASD given the multifaceted factors that influence EF performance. A number of executive-focused cognitive models have been proposed to explain the symptom clusters observed in ASD. Empirical studies suggest a broad impairment in EF, although there is significant inter-individual variability in EF performance. The observed heterogeneity of EF performance is considered a limiting factor in establishing EF as a cognitive endophenotype in ASD. We propose, however, that this variability in EF performance presents an opportunity for subtyping within the spectrum that can contribute to targeted diagnostic and intervention strategies. Enhanced understanding of the neurobiological basis that underpins EF performance, such as the excitation/inhibition hypothesis, will likely be important. Application of the RDoC framework could provide clarity on the nature of EF impairment in ASD with potential for greater understanding of, and improved interventions for, this disorder.
The refined formulas yield improved exchange rate estimation. General convergence intervals of the methods that would apply for smaller shift agents are also discussed. Magn Reson Med 79:1708-1721, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
The ability to walk is critical for functional independence and wellbeing. The pre-frontal cortex (PFC) plays a key role in cognitive control of locomotion, notably under attention-demanding conditions. Factors that influence brain responses to cognitive demands of locomotion, however, are poorly understood. Herein we evaluated the individual and combined effects of gender and perceived stress on stride velocity and PFC Oxygenated Hemoglobin (HbO2) assessed during single and dual-task walking conditions. The experimental paradigm included three tasks: a) Normal-Walk (NW); b) Cognitive Interference (Alpha); c) Walk-While-Talk (WWT). An instrumented walkway was used to assess stride velocity in NW and WWT conditions. Functional Near-Infrared-Spectroscopy (fNIRS) was used to quantify PFC HbO2 levels during NW, Alpha and WWT. Perceived task-related stress was evaluated with a single 11-point scale item. Participants were community residing older adults (age=76.8±6.7ys; %female=56). Results revealed that higher perceived stress was associated with greater decline in stride velocity from single to dual-task conditions among men. Three-way interactions revealed that gender moderated the effect of perceived stress on changes in HbO2 levels comparing WWT to NW and Alpha. Attenuation in the increase in HbO2 levels, in high compared to low perceived stress levels, from the two single task conditions to WWT was observed only in men. Conclusion Older men maybe more vulnerable to the effect of perceived stress on the change in PFC oxygenation levels across walking conditions that vary in terms of cognitive demands. These findings confer important implications for assessment and treatment of individuals at risk of mobility impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.