Ghrelin, apart from its metabolic role, is nowadays considered as a basic regulator of reproductive functions of mammals, acting at central and gonadal levels. Here, we investigated for possible direct actions of ghrelin on in vitro maturation of bovine oocytes and for its effects on blastocyst yield and quality. In experiment 1, cumulus oocyte complexes (COCs) were matured in the presence of four different concentrations of ghrelin (0, 200, 800 and 2000 pg/ml). In vitro fertilization and embryo culture were carried out in the absence of ghrelin, and blastocyst formation rates were examined on days 7, 8 and 9. In experiment 2, only the 800 pg/ml dose of ghrelin was used. Four groups of COCs were matured for 18 or 24 h (C18, Ghr18, C24 and Ghr24), and subsequently, they were examined for oocyte nuclear maturation and cumulus layer expansion; blastocysts were produced as in experiment 1. The relative mRNA abundance of various genes related to metabolism, oxidation, developmental competence and apoptosis was examined in snap-frozen cumulus cells, oocytes and day-7 blastocysts. In experiment 1, ghrelin significantly suppressed blastocyst formation rates. In experiment 2, more ghrelin-treated oocytes matured for 18 h reached MII compared with controls, while no difference was observed when maturation lasted for 24 h. At 18 and 24 h, the cumulus layer was more expanded in ghrelin-treated COCs than in the controls. The blastocyst formation rate was higher in Ghr18 (27.7 ± 2.4%) compared with Ghr24 (17.5 ± 2.4%). Differences were detected in various genes' expression, indicating that in the presence of ghrelin, incubation of COCs for 24 h caused over-maturation (induced ageing) of oocytes, but formed blastocysts had a higher hatching rate compared with the controls. We infer that ghrelin exerts a specific and direct role on the oocyte, accelerating its maturational process.