Amphotericin B (AmpB), one of the most commonly used agents in the treatment of severe fungal infections and life-threatening parasitic diseases such as visceral Leishmaniasis, has a negligible oral bioavailability, primarily due to a low solubility and permeability. To develop an oral formulation, medium chain triglycerides and nonionic surfactants in a self-nano-emulsifying drug delivery system (SNEDDS) containing AmpB were combined with room temperature ionic liquids (RTILs) of imidazolium. The presence of ionic liquids significantly enhanced the solubility of AmpB, exhibited a low toxicity and increased the transport of AmpB across Caco-2 cell monolayers. The combination of RTILs with a lipid formulation might be a promising strategy to improve the oral bioavailability of AmpB.
Polymer based dosages form the mainstay of drug delivery systems either as simple matrix carrier materials or active release behaviour modulating agents. In addition, several techniques have been developed further to deliver novel polymeric structures. One such method is electrospinning (ES); a maturing process which is operational at the ambient environment and enables drug loading (in molecularly dispersed form) directly into a fibrous polymer matrix system. Since there is an impending need to address healthcare challenges arising from an increase in the aging population (requiring enhanced treatments), the ES method was used to develop fibrous polymer composite-indomethacin (
In the current study, the ex vivo permeation of ropinirole hydrochloride (RH) across porcine buccal mucosa in the presence of three permeation enhancers, namely N-trimethyl chitosan (TMC) (positively charged) a chitosan derivative, sulfobutyl ether-β-cyclodextrin (SBE-β-CD) (negatively charged) and hydroxypropyl-β-cyclodextrin (HP-β-CD) (neutral), was investigated. Buccal permeation studies were conducted using Franz diffusion cells. Cumulative amounts of RH were plotted versus time. The presence of the permeation enhancers significantly increased the transport of the drug across the porcine buccal epithelium compared to its plain congener (RH solution). The rank order effect of the permeation enhancers for the transport of RH across buccal epithelium was TMC ≥ SBE-β-CD > HP-β-CD > RH solution. The presence of TMC increased 1.34-fold the transport of RH across buccal epithelium, whereas an increase of 1.23- and 1.28-fold was reported in the presence of HP-β-CD and SBE-β-CD, respectively. Infrared spectroscopy (IR) was employed to investigate the interaction of permeation enhancers with the epithelial lipids of porcine buccal mucosa corroborating the permeation results. Finally, light microscopy was performed to assess the histological changes in the porcine epithelium. Formation of vacuoles, spongiosis and acantholysis linear detachment and destruction of the epithelium resulted from the presence of the permeation enhancers. The data suggest that all enhancers tested, and particularly TMC, increase the transport of RH across buccal epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.