Objective. Toll-like receptors (TLRs) are patternassociated receptors in innate immunity that may be involved in the recognition of self antigens and the production of pathogenic autoantibodies. This study was undertaken to examine the expression and function of various TLRs in subpopulations of peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE).Methods. The expression of TLRs in PBMCs from 50 SLE patients with active disease (SLE Disease Activity Index [SLEDAI] score >8; n ؍ 26) or inactive disease (SLEDAI score <8; n ؍ 24) and 20 healthy controls was studied by flow cytometry. TLR expression was assessed on various subpopulations of PBMCs (TLR-2 and TLR-4 by membrane staining; TLR-3 and TLR-9 by intracellular staining). TLR function was accessed by stimulating PBMCs with specific ligands.Results. The proportion of B cells and monocytes expressing TLR-9 was higher among patients with active SLE (mean ؎ SD 49.5 ؎ 24.4% and 30.7 ؎ 24.1%, respectively) than among patients with inactive disease Conclusion. In patients with active SLE, the proportion of peripheral blood memory B cells and plasma cells expressing TLR-9 is increased. Endogenous nucleic acids released during apoptotic cell death may stimulate B cells via TLR-9 and contribute to SLE pathogenesis.
Abstract.Patients with idiopathic pulmonary fibrosis (IPF) have a higher incidence of lung cancer. The role of Toll-like receptors (TLRs), a key component of the innate immunity, in interstitial lung diseases (ILDs) and lung cancer pathogenesis is not clarified. TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA expression was quantitatively measured by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in bronchoalveolar lavage fluid (BALF) of 16 IPF patients, 16 non-small cell lung cancer (NSCLC) patients and 9 control subjects. TLR2, TLR3, TLR4 and TLR9 protein expression was assessed on BALF T-lymphocytes using flow cytometry. TLR3 mRNA expression was significantly higher in NSCLC compared to IPF (p= 0.023) and controls (p= 0.001). TLR7 mRNA expression levels were significantly higher in both NSCLC and IPF groups compared to controls (p= 0.029, p= 0.009). TLR9 expression at the mRNA level was significantly higher in both NSCLC and IPF groups compared to controls (p=0.01, p=0.001). Finally, TLR2 mRNA expression was significantly higher in IPF patients compared to controls (p= 0.042). Flow cytometry revealed decreased TLR3 and TLR9 expression in IPF patients compared to the NSCLC group (p= 0.02, p= 0.014) and decreased TLR9 expression in IPF compared with the controls (p= 0.04). TLR2 protein expression was significantly higher in IPF patients compared to NSCLC (p=0.04). Increased expression of endosomal TLRs in NSCLC patients and elevated expression of TLR2 in pulmonary fibrosis are the main results of this study. These results do not provide support for a common TLR pathway hypothesis between NSCLC and IPF.
Resistance of pathogens to drugs is a growing concern regarding many diseases. Parasites like Leishmania, Plasmodium and Entamoeba histolytica; and neoplastic cells, present the multidrug-resistant phenotype rendering chemotherapy ineffective. The acquired resistance of Leishmania to antimony has generated intense research on the mechanisms involved but the question has not yet been resolved. To test the hypothesis that drug efflux in Leishmania, as measured by flow cytometry using the fluorescent dye Rhodamine-123, is largely dependent on the number of efflux pumps an isolate can express, the amount of Pgp 170 molecules was assessed in ten field isolates (5 “resistant” and 5 “susceptible”) using: Western Blotting, Confocal and Transmission Electron Microscopy, and proteomics. Their survival after exposure to three antileishmanial drugs, in vitro, was evaluated and clinical data were compared to the in vitro results. All isolates were resistant to Glucantime but susceptible to Miltefosine, whilst Amphotericin B was more effective on the “susceptible” isolates. The MDR gene, expressing the transmembrane efflux pump Pgp 170, appears to play a key role in the phenomenon of drug resistance. When “susceptible” versus “resistant” parasites were compared, it was shown that the higher the number of Pgp 170 molecules the higher the Rhodamine-123 efflux from the parasite body and, when exposed to the drug, the number of efflux pumps increased. However, the rate of this increase was not linear and it is possible that there is a maximum number of Pgp 170 molecules an isolate can express. Nevertheless, the phenomenon is a complex one and other factors and proteins are involved in which the HSP-70 group proteins, detected in the “resistant” isolates, may play a significant role.
Little is known about the longitudinal effects of smoking cessation on sputum inflammatory cells. We aimed to investigate the changes in sputum inflammatory cells and T-lymphocyte subpopulations after 6 and 12 months smoking cessation. Induced sputum was obtained from 68 healthy smokers before and after 6 months (n = 21) and 1 year (n = 14) smoking cessation and from ten healthy never-smokers. Inflammatory cells were identified by morphology and T-lymphocyte subpopulations by flow cytometry. Sputum macrophages were decreased after 12 months of smoking cessation in comparison to baseline, while neutrophils increased. Moreover, CD8+ T-cells were decreased in smokers before smoking cessation compared to never-smokers and increased in smokers after 6 months of smoking cessation in comparison to baseline; result that was maintained after 1 year of smoking cessation. These novel findings indicate that smoking cessation can equilibrate certain inflammatory cells of smokers with those of nonsmokers, within 6 months of smoking cessation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.