BackgroundCoral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral's intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source of repopulating symbionts is poorly understood. Possibilities include recovery from the proliferation of endogenous symbionts or recovery by uptake of exogenous stress-tolerant symbionts.Methodology/Principal FindingsTo test one of these possibilities, the ability of corals to acquire exogenous symbionts, bleached colonies of Porites divaricata were exposed to symbiont types not normally found within this coral and symbiont acquisition was monitored. After three weeks exposure to exogenous symbionts, these novel symbionts were detected in some of the recovering corals, providing the first experimental evidence that scleractinian corals are capable of temporarily acquiring symbionts from the water column after bleaching. However, the acquisition was transient, indicating that the new symbioses were unstable. Only those symbiont types present before bleaching were stable upon recovery, demonstrating that recovery was from the resident in situ symbiont populations.Conclusions/SignificanceThese findings suggest that some corals do not have the ability to adjust to climate warming by acquiring and maintaining exogenous, more stress-tolerant symbionts. This has serious ramifications for the success of coral reefs and surrounding ecosystems and suggests that unless actions are taken to reverse it, climate change will lead to decreases in biodiversity and a loss of coral reefs.
The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring ( Clupea pallasii ) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2 , which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring ( Clupea harengus ). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.
Populations with spatially restricted gene flow are characterized by genetic differentiation that may be positively correlated with the geographic distance separating populations, a pattern known as isolation by distance (IBD). Here we examined the fine-scale genetic structure of 66 chum salmon (Oncorhynchus keta) populations spawning in Alaska waterways and explored patterns of IBD using 90 nuclear and 3 mitochondrial single nucleotide polymorphisms. Estimating population structure of chum salmon in Alaska is of increasing concern because of fluctuating census sizes and the uncertain effects of harvest on specific populations. We hypothesized that IBD would be present because chum salmon spawn in coastal rivers that are distributed along a linear array and gene flow is spatially restricted due to homing. Evidence of very weak IBD was found throughout the region (R 2 = 0.06, p \ 0.0001) but the strength of the IBD relationship varied greatly over different spatial scales and geographic regions. Decomposed pairwise regression analyses identified nine outlier populations to regional IBD patterns, suggesting that geographic distance is not the only factor influencing genetic differentiation in the region. Instead, population structure appears to be heavily influenced by glacial history of the region and the presence of a glacial refugium on Kodiak Island.
Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ∼13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation-by-distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.