While marine aquaculture has grown rapidly, so have concerns regarding the environmental impacts caused by the industry. In particular, increasing discharges of solid and dissolved fish excretions, nutrients and therapeutic chemicals have coincided with greater public awareness of the possibility of environmental damage. This has stimulated a number of criticisms, drawn from a wide spectrum of interests, ranging from the use of natural fish stocks to produce fish meal for aqua feeds to the effects of enhanced nutrient input on the coastal marine environment. The present study reviews available information on the environmental effects of feeding practices in salmonid aquaculture in Europe. Accumulation of waste food and fish faecal material results in changes in the sediment under fish cages, characterized by a low redox potential, high content of organic material and accumulation of nitrogenous and phosphorous compounds. Although significant environmental impacts have been reported in the literature at distances of up to 100 m from the cages, in general such impacts are reported to be localized to within 20-50 m around the cages. For farmed salmon and trout, mass balance models have been developed for nitrogen and phosphorus, indicating that 50% of the nitrogen and 28% of the phosphorus supplied with the food is wasted in dissolved form. The maximum nutrient release can be estimated from the hydrographic conditions in the immediate vicinity of the farm, such as water volume, tidal water exchange and currents. At present production levels, improvements in the feeding efficiency and Ó Springer Science+Business Media B.V. 2006 feed quality of aquafeeds could reduce waste and consequent environmental impacts.
We compared the gut prokaryotic communities in wild, organically-, and conventionally reared sea bream (Sparus aurata) individuals. Gut microbial communities were identified using tag pyrosequencing of the 16S rRNA genes. There were distinct prokaryotic communities in the three different fish nutritional treatments, with the bacteria dominating over the Archaea. Most of the Bacteria belonged to the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The number of bacterial operational taxonomic units (OTUs) was reduced from the wild to the conventionally reared fish, implying a response of the gut microorganisms to the supplied food and possibly alterations in food assimilation. The dominant bacterial OTU in all examined fish was closely related to the genus Diaphorobacter. This is the first time that a member of the β-Proteobacteria, which dominate in freshwaters, are so important in a marine fish gut. In total the majority of the few Archaea OTUs found, were related to methane metabolism. The inferred physiological roles of the dominant prokaryotes are related to the metabolism of carbohydrates and nitrogenous compounds. This study showed the responsive feature of the sea bream gut prokaryotic communities to their diets and also the differences of the conventional in comparison to the organic and wild sea bream gut microbiota.
Abstract:Aquaponics is the combination of aquaculture (fish) and hydroponic cultivation of plants. This review examines fish welfare in relation to rearing water quality, fish feed and fish waste and faeces to develop a sustainable aquaponic system where the co-cultured organisms, fish, bacteria in biofilters and plants, should be considered holistically in all aquaponics operations. Water quality parameters are the primary environmental consideration for optimizing aquaponic production and for directly impacting fish welfare/health issues and plant needs. In aquaponic systems, the uptake of nutrients should be maximised for the healthy production of the plant biomass but without neglecting the best welfare conditions for the fish in terms of water quality. Measures to reduce the risks of the introduction or spread of diseases or infection and to increase biosecurity in aquaponics are also important. In addition, the possible impacts of allelochemicals, i.e., chemicals released by the plants, should be taken into account. Moreover, the effect of diet digestibility, faeces particle size and settling ratio on water quality should be carefully considered. As available information is very limited, research should be undertaken to better elucidate the relationship between appropriate levels of minerals needed by plants, and fish metabolism, health and welfare. It remains to be investigated whether and to what extent the concentrations of suspended solids that can be found in aquaponic systems can compromise the health of fish. Water quality, which directly affects fish health and well-being, is the key factor to be considered in all aquaponic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.