The dynamics of two wild type strains of Saccharomyces cerevisiae (BY4741 and EGY48) that vary in the ability to produce sterols were compared in batch cultures under different aeration conditions. Poor supply of oxygen enhanced selectivity of the bioprocess in favor of squalene formation. Optimization of inoculum size and fermentation time arranged according to a central composite statistical design revealed significant differences between the strains in terms of yield and productivity. Experimental verification showed that an optimized bioprocess under semianaerobic conditions is competitive with regard to those reported in the literature. Maximum squalene yield and productivity were, respectively, 2967.6 +/- 118.7 microg/L of culture medium and 104 +/- 4.2 microg/Lh for BY4741 and 3129 +/- 109.5 microg/L of culture medium and 155.9 +/- 5.5 microg/Lh for EGY48. The prospect of developing high-purity squalene preparations that meet food safety regulation demands is expected to attract the interest of the food industry.
Interest is increasing in establishing renewable sources for squalene, a functional lipid, as the conventional ones are limited. In the present study, squalene production was achieved in a wild-type laboratory Saccharomyces cerevisiae strain by two safe chemical means using terbinafine (0.05-0.55 mM) and methyl jasmonate (MJ) (0-1.00 mM). Bioprocess kinetics optimized by response surface methodology and monitored by high-performance liquid chromatography revealed a clear dependence of growth and squalene content (SQC) and yield (SQY) on the above regulators. Maximum SQC (10.02±0.53 mg/g dry biomass) and SQY (20.70±1.00 mg/L) were achieved using 0.442 mM terbinafine plus 0.044 mM MJ after 28 h and 0.300 mM terbinafine after 30 h, respectively. A 10-fold increase in SQY was achieved in comparison to that in the absence of regulator. The ruggedness of optimum conditions for SQY was verified for five industrial strains. The cellular lipid fraction (∼12% of dry biomass) was rich in squalene (12-13%). Results are encouraging toward bioprocess scale up.
Squalene uses extend from cosmetics to the medical and nutraceutical sectors. International concern for the protection of the deep sea sharks, the major source for this hydrocarbon so far, has engendered research interest in other directions (plant kingdom, microbes). Biotechnology offers an alternative approach with the potential of safety requirements and high-yield. Saccharomyces cerevisiae appears to be a promising choice for food and nutraceutical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.