Vanadia/titania catalysts were synthesized by the equilibrium deposition filtration (EDF) method, which is a synthesis route that follows a molecular-level approach. The type of interfacial deposition as well as the interfacial speciation of the deposited oxo-V(V) species were determined by means of a model that takes into account experimental “proton-ion” curves and “adsorption edges”. It is shown that at pH ≥ 9.5, the deposition proceeds exclusively through the formation of mono-substituted inner sphere monomeric species in an “umbrella”-like Ti–OV(OH)2O configuration, whilst with lowering of the pH, a second species, namely the disubstituted inner sphere quadrameric species in a (Ti-O)2V4O10 configuration possessing two mono-oxo V=O and two di-oxo V(=O)2 terminations gradually prevails, which is in co-existence with the monomeric species. Raman spectroscopy is used for verifying the solution speciation, which is different compared to the interfacial speciation of the deposited oxo-V(V) species. Furthermore, in situ Raman spectroscopy was used to verify the model-predicted interfacial speciation of the deposited oxo-V(V) species and to monitor the temperature-dependent evolution up to 430 °C. Hence, a controlled formation of a specific vanadia species on a titania surface is enabled, which, depending on the synthesis conditions, can result in specific catalyst characteristics and thus possibly different catalytic behavior for a specific reaction.
The mechanism of retention of vanadium oxo-species at the “titanium oxide/aqueous solution” interface was investigated over a wide pH range (4-9) and V(V) solution concentration (10-5-2×10-2 M) by combining equilibrium deposition experiments, potentiometric titrations, microelectrophoresis and “proton–ion” titration curves. It was inferred that the adsorbed V(V) oxo-species are retained inside the compact layer of the interface through hydrogen/coordinative bonds forming very probably innersphere complexes with the titania surface groups.
Στην παρούσα διδακτορική διατριβή ασχοληθήκαμε με την εξακρίβωση του μηχανισμού εναπόθεσης του καταλυτικά δραστικού στοιχείου βαναδίου στην επιφάνεια της τιτάνιας, που λαμβάνει χώρα στο στάδιο της ισορροπίας της μεθόδου “Εναπόθεση Ισορροπίας-Διήθηση”, καθώς και της τοπικής δομής των σχηματιζόμενων επιφανειακών ειδών, τόσο στο στάδιο της ισορροπίας όσο και κατά την περαιτέρω αύξηση της θερμοκρασίας.Για να πετύχουμε τα παραπάνω, ακολουθήσαμε τα εξής τέσσερα βήματα:1ο βήμα: προσδιορίσαμε τα φυσικοχημικά χαρακτηριστικά του οξειδίου μας (προσδιορισμός ισοηλεκτρικού σημείου με πειράματα μικροηλεκτροφόρησης και προσδιορισμός σημείου μηδενικού φορτίου με πειράματα ποτενσιομετρικών τιτλοδοτήσεων) και μελετήσαμε τη διαφασική περιοχή που αναπτύσσεται μεταξύ του οξειδίου και του ηλεκτρολυτικού διαλύματος.2ο βήμα: προσδιορίσαμε τις φυσικοχημικές παραμέτρους της διεπιφανειακής περιοχής τιτάνιας/ηλεκτρολυτικού διαλύματος (εγγενείς σταθερές πρωτονίωσης των δύο ειδών επιφανειακών οξυγόνων της τιτάνιας, χωρητικότητες C1 και C2 της εσωτερικής και εξωτερικής στοιβάδας Stern αντίστοιχα, σταθερές σχηματισμού των ιοντικών ζευγών και κατανομή του φορτίου zi των αντισταθμιστικών ιόντων του ηλεκτρολύτη που σχηματίζουν τα ιοντικά ζεύγη). Αυτό το πετύχαμε με την περιγραφή ποτενσιομετρικών καμπυλών τιτλοδότησης αιωρημάτων τιτάνιας, με τη βοήθεια κατάλληλου υπολογιστικού προγράμματος επίλυσης χημικών ισορροπιών. Για το σκοπό αυτό υιοθετήσαμε το συνδυασμό ενός μοντέλου για την περιγραφή της διεπιφάνειας, τη σύγχρονη εκδοχή του μοντέλου των τριών επιπέδων (Three Plane Model, TPM), με δύο μοντέλα για την περιγραφή φόρτισης της επιφάνειας, το μοντέλο Music και το μοντέλο Α. Το μοντέλο Music δέχεται την ύπαρξη δύο ειδών επιφανειακών οξυγόνων, τα ακραία (TiOΗ) και τα γεφυρωμένα (Ti2O) με φορτία -0.33 και -0.67 αντίστοιχα και επιφανειακή πυκνότητα ίση με 6θέσεις/nm2. Τα παραπάνω φορτία προσδιορίζονται με την αρχή του σθένους δεσμού κατά Pauling. Το μοντέλο Α δέχεται την ύπαρξη δύο ειδών επιφανειακών οξυγόνων, τα ακραία (TiO) και τα γεφυρωμένα (Ti2O) με φορτία -0.35 και -0.57 αντίστοιχα και επιφανειακή πυκνότητα ίση με 5.6θέσεις/nm2. Το φορτίο των επιφανειακών οξυγόνων υπολογίστηκε με χρήση της θεωρίας του συναρτησιακού της ηλεκτρονικής πυκνότητας (Density Functional Theory, DFT) με το συναρτησιακό των Perdew-Burke-Ernzerhof το οποίο περιλαμβάνει και διορθώσεις βαθμίδας.3ο βήμα: εκτέλεση μιας πειραματικής μεθοδολογίας η οποία περιλαμβάνει ηλεκτροχημικές τεχνικές (ποτενσιομετρικές τιτλοδοτήσεις και πειράματα μικροηλεκτροφόρησης αιωρημάτων τιτάνιας παρουσία και απουσία βαναδικών ειδών), πειράματα προσρόφησης (για συγκεντρώσεις V(V) 2*10-2Μ – 3*10-3Μ και pH 4.0 – 9.0) και φασματοσκοπικές τεχνικές. Τα δείγματα HKVXOYZ-/TiO2 που ελήφθησαν από τα παραπάνω πειράματα προσρόφησης, χαρακτηρίστηκαν με φασματοσκοπία Laser-Raman. Σκοπός των πειραματικών μεθοδολογιών είναι ο προσδιορισμός του τρόπου της διεπιφανειακής εναπόθεσης των βαναδικών ειδών, καθώς επίσης και η απόκτηση μιας πρώτης εικόνας για την τοπική δομή των σχηματιζόμενων επιφανειακών ειδών.4ο βήμα: εφαρμογή κατάλληλων υπολογιστικών μεθοδολογιών σκοπός των οποίων είναι η περιγραφή των παραπάνω πειραματικών αποτελεσμάτων. Για το σκοπό αυτό χρησιμοποιήθηκε το υπολογιστικό πρόγραμμα επίλυσης χημικών ισορροπιών (Visual Minteq), στο οποίο ενσωματώθηκαν όλες οι φυσικοχημικές παράμετροι της διεπιφανειακής περιοχής που προσδιορίστηκαν παραπάνω. Η πολύ καλή περιγραφή των πειραματικών δεδομένων μας οδήγησε στην εξακρίβωση της τοπικής δομής των επιφανειακών ειδών, αλλά και στον προσδιορισμό των εγγενών σταθερών σχηματισμού τους.Οι πειραματικές μεθοδολογίες έδειξαν ότι υπάρχει μεγάλη χημική συγγένεια μεταξύ των βαναδικών ειδών και των επιφανειακών ομάδων της τιτάνιας. Παρατηρείται σημαντική έκταση της προσρόφησης των αρνητικών βαναδικών ειδών ακόμα και σε πολύ υψηλές τιμές pH, όπου η επιφάνεια έχει ομόσημο με αυτά φορτίο. Έτσι η διεπιφανειακή εναπόθεση των βαναδικών ειδών δεν είναι ηλεκτροστατικής φύσεως αλλά λαμβάνει χώρα μέσω χημικών δυνάμεων.Οι υπολογιστικές μεθοδολογίες έδειξαν ότι τα βαναδικά είδη μπορούν να προσροφώνται στην επιφάνεια της τιτάνιας σχηματίζοντας μόνο- και δι-υποκατεστημένα μονομερή σύμπλοκα εσωτερικής σφαίρας και δι-υποκατεστημένα τετραμερή σύμπλοκα εσωτερικής σφαίρας. Η παρουσία των υπόλοιπων πολυμερών ειδών βαναδίου δεν είχε καμία συνεισφορά στην προσρόφηση. Επιπλέον, βρέθηκε ότι είναι πολύ πιθανό να υπάρχει αλληλεπίδραση μέσω δεσμών υδρογόνου στην ελεύθερη πλευρά των προσροφημένων τετραμερών συμπλόκων εσωτερικής σφαίρας. Τα παραπάνω ευρήματα των υπολογιστικών μεθοδολογιών επιβεβαιώθηκαν πλήρως από τη φασματοσκοπία Laser-Raman.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.