Super integrated systems have an extremely important property: they allow the separation of variables in the Hamilton-Jacobi and Schrödinger equations in several orthogonal coordinate systems. The choice of a specific coordinate system is dictated by considerations of convenience, for example, the spectroscopic problem of hydrogen-like systems uses a spherical coordinate system, when considering the Stark effect - a parabolic coordinate system, and in the two-center problem - elongated spheroid coordinates. This abundance of separation of variables in the Schrödinger equation for super integrated systems leads to the problem of interphasic decompositions, i.e. there is a need to move from one wave function to another. The generalized MIC-Kepler problem in spherical coordinates is considered as an explicit form of the additional motion integral and the generalized MIC-Kepler problem in spheroid coordinates is given Λ ̂=M ̂+(R√(μ_0 ))/ℏ Ω ̂^((s) ) main function of which is the spheroid basis and three-membered recurrent relations are derived to which the decomposition coefficients of the spheroid basis according to spherical and parabolic bases as well.
The accumulation of sediments in reservoir is always a problem. Over time, these accumulations occupy the volume meant for water management, dramatically reducing the reservoir's effectiveness. The environment of the river basin below the reservoir undergoes significant changes. In this regard, assessing changes in volumetric W-H characteristics, particularly in reservoirs built on high turbidity rivers, is critical. The Mataghis Reservoir on Tartar River was chosen as the object of study. The quantity of accumulated sediments was established by original measurements and was calculated in three hydrologic ways at distinct stages of operation. The actual graphs showing the reservoir's W-H volumetric characteristics were made two decades after commissioning and are still in use. According to the findings, over 70 per cent of the reservoir volume has been filled with sediments over the course of the reservoir's thirty-year operation. A theoretical model of the sediment buildup process in basins has been created. Separate parameters have been created for the deposition of bottom sediments entering the reservoir and suspended particles in the flow. Based on them, the patterns of distribution of accumulated sediments according to the length and height of the reservoir were drawn out. The vertical pulsation velocity and the results of studies for determining the minimum rate of soil particle flow were used. To solve sedimentation problems in operating and newly constructed reservoirs, a methodology for evaluating changes in the amount of collected water and changes in the volume of water control, as well as a theoretical method for projecting their future behavior, can be applied
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.