Chronic pain is nowadays used as an umbrella term referring to a wide range of clinical conditions, such as fibromyalgia, migraine, or long-standing pain states without actual known causes. However, labeling a patient's clinical condition with the term "chronic pain", when dealing with pain lasting longer than 3 months, might be misleading. This paper aims at analyzing the possible pitfalls related to the use of the term "chronic pain" in the clinical field. It appears, indeed, that the term "chronic pain" shows a semantic inaccuracy on the basis of emerging scientific evidences on the pathogenesis of different long-standing pain states. The major pitfalls in using this label emerge in clinical settings, especially with patients having a biomedical perspective on pain or from different cultures, or with healthcare providers of other medical specialties or different disciplines. A label solely emphasizing temporal features does not help to discern the multifaceted complexity of long-standing pain states, whose onset, maintenance and exacerbation are influenced by a complex and interdependent set of bio-psycho-social factors. Thus, finding a more meaningful name might be important. We call upon the necessity of bringing awareness and implementing educational activities for healthcare providers, as well as for the public, on the biopsychosocial approach to assess, prevent and care of chronic pain. Further research on the etiopathogenetic processes of chronic pain states is also required, together with examinative diagnostic methods, to individuate the most appropriate label(s) representing the complex longstanding pain states and to avoid adopting the term "chronic pain" inappropriately.
ImportanceMeropenem is a widely prescribed β-lactam antibiotic. Meropenem exhibits maximum pharmacodynamic efficacy when given by continuous infusion to deliver constant drug levels above the minimal inhibitory concentration. Compared with intermittent administration, continuous administration of meropenem may improve clinical outcomes.ObjectiveTo determine whether continuous administration of meropenem reduces a composite of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria compared with intermittent administration in critically ill patients with sepsis.Design, Setting, and ParticipantsA double-blind, randomized clinical trial enrolling critically ill patients with sepsis or septic shock who had been prescribed meropenem by their treating clinicians at 31 intensive care units of 26 hospitals in 4 countries (Croatia, Italy, Kazakhstan, and Russia). Patients were enrolled between June 5, 2018, and August 9, 2022, and the final 90-day follow-up was completed in November 2022.InterventionsPatients were randomized to receive an equal dose of the antibiotic meropenem by either continuous administration (n = 303) or intermittent administration (n = 304).Main Outcomes and MeasuresThe primary outcome was a composite of all-cause mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. There were 4 secondary outcomes, including days alive and free from antibiotics at day 28, days alive and free from the intensive care unit at day 28, and all-cause mortality at day 90. Seizures, allergic reactions, and mortality were recorded as adverse events.ResultsAll 607 patients (mean age, 64 [SD, 15] years; 203 were women [33%]) were included in the measurement of the 28-day primary outcome and completed the 90-day mortality follow-up. The majority (369 patients, 61%) had septic shock. The median time from hospital admission to randomization was 9 days (IQR, 3-17 days) and the median duration of meropenem therapy was 11 days (IQR, 6-17 days). Only 1 crossover event was recorded. The primary outcome occurred in 142 patients (47%) in the continuous administration group and in 149 patients (49%) in the intermittent administration group (relative risk, 0.96 [95% CI, 0.81-1.13], P = .60). Of the 4 secondary outcomes, none was statistically significant. No adverse events of seizures or allergic reactions related to the study drug were reported. At 90 days, mortality was 42% both in the continuous administration group (127 of 303 patients) and in the intermittent administration group (127 of 304 patients).Conclusions and RelevanceIn critically ill patients with sepsis, compared with intermittent administration, the continuous administration of meropenem did not improve the composite outcome of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28.Trial RegistrationClinicalTrials.gov Identifier: NCT03452839
Chronic pain represents one of the most serious worldwide medical problems, in terms of both social and economic costs, often causing severe and intractable physical and psychological suffering. The lack of biological markers for pain, which could assist in forming clearer diagnoses and prognoses, makes chronic pain therapy particularly arduous and sometimes harmful. Opioids are used worldwide to treat chronic pain conditions, but there is still an ambiguous and inadequate understanding about their therapeutic use, mostly because of their dual effect in acutely reducing pain and inducing, at the same time, tolerance, dependence, and a risk for opioid use disorder. In addition, clinical studies suggest that opioid treatment can be associated with a high risk of immune suppression and the development of inflammatory events, worsening the chronic pain status itself. While opioid peptides and receptors are expressed in both central and peripheral nervous cells, immune cells, and tissues, the role of opioids and their receptors, when and why they are activated endogenously and what their exact role is in chronic pain pathways is still poorly understood. Thus, in this review we aim to highlight the interplay between pain and immune system, focusing on opioids and their receptors.
BackgroundMid-regional pro-adrenomedullin (MR-proADM), an endothelium-related peptide, is a predictor of death and multi-organ failure in respiratory infections and sepsis and seems to be effective in identifying COVID-19 severe forms. The study aims to evaluate the effectiveness of MR-proADM in comparison to routine inflammatory biomarkers, lymphocyte subpopulations, and immunoglobulin (Ig) at an intensive care unit (ICU) admission and over time in predicting mortality in patients with severe COVID-19.MethodsAll adult patients with COVID-19 pneumonia admitted between March 2020 and June 2021 in the ICUs of a university hospital in Italy were enrolled. MR-proADM, lymphocyte subpopulations, Ig, and routine laboratory tests were measured within 48 h and on days 3 and 7. The log-rank test was used to compare survival curves with MR-proADM cutoff value of >1.5 nmol/L. Predictive ability was compared using the area under the curve (AUC) and 95% confidence interval (CI) of different receiver-operating characteristic curves.ResultsA total of 209 patients, with high clinical severity [SOFA 7, IQR 4–9; SAPS II 52, IQR 41–59; median viral pneumonia mortality score (MuLBSTA)−11, IQR 9–13] were enrolled. ICU and overall mortality were 55.5 and 60.8%, respectively. Procalcitonin, lactate dehydrogenase, D-dimer, the N-terminal prohormone of brain natriuretic peptide, myoglobin, troponin, neutrophil count, lymphocyte count, and natural killer lymphocyte count were significantly different between survivors and non-survivors, while lymphocyte subpopulations and Ig were not different in the two groups. MR-proADM was significantly higher in non-survivors (1.17 ± 0.73 vs. 2.31 ± 2.63, p < 0.0001). A value of >1.5 nmol/L was an independent risk factor for mortality at day 28 [odds ratio of 1.9 (95% CI: 1.220–3.060)] after adjusting for age, lactate at admission, SOFA, MuLBSTA, superinfections, cardiovascular disease, and respiratory disease. On days 3 and 7 of the ICU stay, the MR-proADM trend evaluated within 48 h of admission maintained a correlation with mortality (p < 0.0001). Compared to all other biomarkers considered, the MR-proADM value within 48 h had the best accuracy in predicting mortality at day 28 [AUC = 0.695 (95% CI: 0.624–0.759)].ConclusionMR-proADM seems to be the best biomarker for the stratification of mortality risk in critically ill patients with COVID-19. The Ig levels and lymphocyte subpopulations (except for natural killers) seem not to be correlated with mortality. Larger, multicentric studies are needed to confirm these findings.
This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of −68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.