We tested whether rat liver preservation performed by machine perfusion (MP) at 20°C can enhance the functional integrity of steatotic livers versus simple cold storage. We also compared MP at 20°C with hypothermic MP at 8°C, and 4°C. Obese and lean male Zucker rats were used as liver donors. MP was performed for 6 hours with a glucose and N-acetylcysteine-supplemented Krebs-Henseleit solution. Both MP and cold storage preserved livers were reperfused with Krebs-Henseleit solution (2 hours at 37°C). MP at 4°C and 8°C reduced the fatty liver necrosis compared with cold storage but we further protected the organs using MP at 20°C. Necrosis did not differ in livers from lean animals submitted to the different procedures; the enzymes released in steatotic livers preserved by MP at 20°C were similar to those showed in nonsteatotic organs. The adenosine triphosphate/adenosine diphosphate ratio and bile production were higher and the oxidative stress and biliary enzymes were lower in steatotic livers preserved by MP at 20°C as compared with cold storage. In livers from lean rats, the adenosine triphosphate/adenosine diphosphate ratio appears better conserved by MP at 20°C as compared with cold storage. In steatotic livers preserved by cold storage, a 2-fold increase in tumor necrosis factor-alpha levels and caspase-3 activity was observed as compared with organs preserved by MP at 20°C. These data are substantiated by better morphology, higher glycogen content, and lower reactive oxygen species production by sinusoidal cells in steatotic liver submitted to MP at 20°C versus cold storage. MP at 20°C improves cell survival and leads to a marked improvement in hepatic preservation of steatotic livers as compared with cold storage. Liver Transpl 15:20-29, 2009.
Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL‐1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL‐1 solutions with or without MEL + TMZ and subjected to 2‐hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin‐1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL‐1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL‐1 alone. IGL‐1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin‐1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL‐1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.