The aim of the present work was the study of phosphonic acids grafting on the surface of SnO2at different molar ratios. In this paper we describe the functionalization of SnO2surfaces with phosphonic acids RPO(OH)2. The surface modification process was achieved by using phenyl-phosphonic acid (PPA) and vinyl-phosphonic acid (VPA). The synthesized materials were investigated by using FT-IR, TGA (in air and in nitrogen), EDX, ESEM, and TEM methods. This synthetic approach has many advantages: films with optical quality and controlled thickness can be obtained using low temperatures and cheap raw materials, by using “green chemistry” synthetic routes. The hybrid materials have structures diversity and fascinating applications, attracting attention for a long time, due to their potential.
One well-known method for hybrids synthesis with incorporated organic dyes is sol-gel method, which is based on the concept of molecular manipulation to design ceramics, glasses, and composites. The low-temperature process allows for the incorporation of guest organic molecules within the inorganic matrix, as well as for the synthesis of hybrid networks in which the organic and inorganic phases are interpenetrating. The aim of the work presented in this paper was the preparation of the gels with three different dyes, at different molar ratios by using the hydrolytic sol-gel process. The interaction of the dye and the oxide was examined by UV-vis spectroscopy and FT-IR. The thermal stability of the hybrid organic-inorganic xerogel formed here was studied by thermal analysis. The micrographs obtained by scanning electron microscopy (SEM) revealed the high density of the films. Such characteristics indicate the possible application of these films in solar cells.
An introduction and overview of the transesterification method is presented in this review. This method is a very convenient way to obtain polyphosphoesters (PPEs). It can be simply described as a chemical reaction in which an ester is transformed into another one by the exchange of alkoxy groups. In this review, we will refer to the synthesis of PPEs via transesterification. In other words, it is focused on the applications of the transesterification method in phosphorus chemistry to obtain polymers (PPEs). The PPEs are an interesting class of organophosphorus polymers. These compounds are important for biological applications because of their biocompatibility and similarity to biopolymers. When the products are polymers, the chemical reaction is called polytransesterification. This method has also several applications in industry (esters of oil, paint industry). C
Reversed phase transfer catalysis (RPTC) was applied to synthesize the Naphthol AS-D pigment. This method consists in the transfer of the aryldiazonium cation 4-nitrobenzenediazonium from aqueous medium into the organic phase (nitrobenzene) in the form of a lipophilic ions pair by the catalyst used (perfluorooctyl potassium sulfonates). In the organic phase the azo-coupling reaction between 4-nitrobenzenediazonium chloride and 3-hydroxy-2-carboxylic acid 2-methyl-anilide (Naphthol AS-D) takes place as coupling component. Using this unconventional method of synthesis, an increase of the reaction rate, combined with a higher purity of the product, was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.