We characterized by fluorescence in situ hybridization and Southern blotting 14 partial Xq monosomies, 11 due to terminal deletions and 3 secondary to X/autosome translocations. Three cases were mosaics with a XO cell line. In view of the possible role played by telomeres in chromosome segregation, we hypothesize a relationship between the loss of telomeric sequences in terminal deletions and the presence of 45,X cells. A correlation between phenotype and extent of deletion reveal that there is no correspondence between the size of the deletion and impairment of gonadal function. Turner stigmata are absent in patients without an XO cell line, when the breakpoint is distal to Xq24. A low birthweight is present whenever the breakpoint is at q22 or more proximal.
Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45, X/46,X,i(Y)(q12) and 46,XY/47,XY,+t(X;Y) (p22.3;p11.3). The analysis of the behavior of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.
Interphase behaviour of centromeric heterochromatin of chromosomes 1 and 16 has been investigated in lymphocytes and fibroblasts of patients with ICF syndrome and of normal subjects with non-isotopic in situ hybridization, using the satellite II-related probe pHuR 195. We found evidence for interphase somatic pairing in ICF lymphocytes with a frequency higher than that found in normal cells. Lymphocytes of ICF patients showed nuclear protrusions and micronuclei and these nuclear abnormalities consistently involved a hybridization signal. Somatic pairing was also present in fibroblasts, but with frequencies similar in normal and ICF subjects. The fibroblasts do not have the major chromosomal abnormalities found in lymphocytes. The degree of heterochromatin condensation in fibroblasts was lower than that in lymphocytes and we postulate that the more decondensed state of chromocentres in the fibroblasts could be the reason for the absence of the major chromosomal abnormalities.
We characterized by fluorescence in situ hybridization and Southern blotting 14 partial Xq monosomies, 11 due to terminal deletions and 3 secondary to X/autosome translocations. Three cases were mosaics with a XO cell line. In view of the possible role played by telomeres in chromosome segregation, we hypothesize a relationship between the loss of telomeric sequences in terminal deletions and the presence of 45,X cells. A correlation between phenotype and extent of deletion reveal that there is no correspondence between the size of the deletion and impairment of gonadal function. Turner stigmata are absent in patients without an XO cell line, when the breakpoint is distal to Xq24. A low birthweight is present whenever the breakpoint is at q22 or more proximal.
Cytogenetic studies on an azoospermic male revealed a balanced Y;l translocation: 46, X, t(Y;l)(ql2;p34.3). In situ hybridization with the probe St35–239 (DXY64) and with a probe detecting telomeric sequences revealed that only the Y telomere is involved in the translocation. Fluorescence in situ hybridization with a chromosome 1 library on meiotic preparations revealed consistent contact of the painted chromosome 1 with the sex vesicle at pachytene, the most advanced stage of spermatogenesis observed. No deletions were observed after Southern blot analysis with probes p49f (DYS1), 50f2 (DYS7), and 52d (DYF27), which map in interval 6 of the Y chromosome, which includes the azoospermia factor (AZF) gene. The results indicate that the infertility of the translocation carrier could be due to an alteration of the sex vesicle structure or to a disturbance of X-chromosome inactivation as a result of the proximity to the autosomal portion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.