Motivation: Graphical models are often employed to interpret patterns of correlations observed in data through a network of interactions between the variables. Recently, Ising/Potts models, also known as Markov random fields, have been productively applied to diverse problems in biology, including the prediction of structural contacts from protein sequence data and the description of neural activity patterns. However, inference of such models is a challenging computational problem that cannot be solved exactly. Here we describe the adaptive cluster expansion (ACE) method to quickly and accurately infer Ising or Potts models based on correlation data. ACE avoids overfitting by constructing a sparse network of interactions sufficient to reproduce the observed correlation data within the statistical error expected due to finite sampling. When convergence of the ACE algorithm is slow, we combine it with a Boltzmann Machine Learning algorithm (BML). We illustrate this method on a variety of biological and artificial data sets and compare it to state-of-the-art approximate methods such as Gaussian and pseudo-likelihood inference. Results: We show that ACE accurately reproduces the true parameters of the underlying model when they are known, and yields accurate statistical descriptions of both biological and artificial data. Models inferred by ACE have substantially better statistical performance compared to those obtained from faster Gaussian and pseudo-likelihood methods, which only precisely recover the structure of the interaction network. Availability: The ACE source code, user manual, and tutorials with example data are freely available on GitHub at https://github.com/johnbarton/ACE. Contacts:
Despite the biological importance of non-coding RNA, their structural characterization remains challenging. Making use of the rapidly growing sequence databases, we analyze nucleotide coevolution across homologous sequences via Direct-Coupling Analysis to detect nucleotide-nucleotide contacts. For a representative set of riboswitches, we show that the results of Direct-Coupling Analysis in combination with a generalized Nussinov algorithm systematically improve the results of RNA secondary structure prediction beyond traditional covariance approaches based on mutual information. Even more importantly, we show that the results of Direct-Coupling Analysis are enriched in tertiary structure contacts. By integrating these predictions into molecular modeling tools, systematically improved tertiary structure predictions can be obtained, as compared to using secondary structure information alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.