Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.
This paper describes exploratory experiments to validate the possibility of programming autonomous robots using an agent-oriented programming language. Proper perception of the environment, by means of various types of sensors, and timely reaction to external events, by means of effective actuators, are essential to provide robots with a sufficient level of autonomy. The agent-oriented programming paradigm is relevant with this respect because it offers language-level abstractions to process events and to command actuators. A recent agent-oriented programming language called Jadescript is presented in this paper together with its new features specifically designed to handle events. Exploratory experiments on a simple case-study application are presented to show the validity of the proposed approach and to exemplify the use of the language to program autonomous robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.