Numerical methods for Volterra integral equations with discontinuous kernel need to be tuned to their peculiar form. Here we propose a version of the trapezoidal direct quadrature method adapted to such a type of equations. In order to delineate its stability properties, we first investigate about the behavior of the solution of a suitable (basic) test equation and then we find out under which hypotheses the trapezoidal direct quadrature method provides numerical solutions which inherit the properties of the continuous problem.
We investigate the class of general linear methods of order $p$ and stage order $q=p$ for the numerical solution of Volterra integral equations of the second kind. Construction of highly stable methods based on the Schur criterion is described and examples of methods of order one and two which have good stability properties with respect to the basic test equation and the convolution one are given
In this paper we propose and study a hybrid discrete in continuous mathematical model of collective motion under alignment and chemotaxis effect. Starting from the paper by Di Costanzo et al (2015a), in which the Cucker-Smale model (Cucker and Smale, 2007) was coupled with other cell mechanisms, to describe the cell migration and self-organization in the zebrafish lateral line primordium, we introduce a simplified model in which the coupling between an alignment and chemotaxis mechanism acts on a system of interacting particles. In particular we rely on a hybrid description in which the agents are discrete entities, while the chemoattractant is considered as a continuous signal. The proposed model is then studied both from an analytical and a numerical point of view. From the analytic point of view we prove, globally in time, existence and uniqueness of the solution. Then, the asymptotic behaviour of a linearised version of the system is investigated. Through a suitable Lyapunov functional we show that for t → +∞, the migrating aggregate exponentially converges to a state in which all the particles have a same position with zero velocity. Finally, we present a comparison between the analytical findings and some numerical results, concerning the behaviour of the full nonlinear system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.