MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects. In vitro assays showed that PLZF interacts with and inhibits the miR-146a promoter, and that miR-146a targets CXCR4 mRNA, impeding its translation. In megakaryopoietic cultures of CD34(+) progenitors, PLZF was upregulated, whereas miR-146a expression decreased and CXCR4 protein increased. MiR-146a overexpression and PLZF or CXCR4 silencing impaired megakaryocytic (Mk) proliferation, differentiation and maturation, as well as Mk colony formation. Mir-146a knockdown induced the opposite effects. Rescue experiments indicated that the effects of PLZF and miR-146a are mediated by miR-146a and CXCR4, respectively. Our data indicate that megakaryopoiesis is controlled by a cascade pathway, in which PLZF suppresses miR-146a transcription and thereby activates CXCR4 translation.
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
IntroductionDuring megakaryocytic (Mk) differentiation, Mk precursors switch from a mitotic to an endomitotic process characterized by DNA duplication without cytokinesis. This still poorly understood process leads to the formation of large polyploid cells with polylobulated nuclei that, in turn, give rise to platelets by cytoplasm fragmentation. 1,2 The major regulator of Mk development, Mpl ligand/ thrombopoietin (TPO), acts at all stages of megakaryocytopoiesis: commitment and proliferation of hematopoietic progenitor cells (HPCs), polyploidization of Mk precursors, and final maturation, including the formation of membrane demarcations and platelet production (reviewed in Kaushansky, 1 ZuckerFranklin and Kaushansky, 2 Zimmet and Ravid, 3 Cramer et al 4 ). However, despite these properties, TPO fails to induce in vitro a level of Mk polyploidization comparable to that observed in vivo. 5-7 Addition of either single or combined cytokines (ie, kit ligand, interleukin-3, interleukin-6) to TPO-containing cultures, although improving Mk proliferation, negatively affects cytoplasmic maturation and polyploidization. 5,6 Similarly, although erythropoietin (Epo) is considered the main growth factor stimulating erythropoiesis, additional cytokines are required at early and late erythroid (E) stages. 8 Vascular endothelial growth factor (VEGF) is a key factor for proliferation and survival of endothelial cells. [9][10][11] The VEGF family, including VEGF/VEGF-A, -B, -C, -D, and -E, 10-12 as well as the placenta growth factor (PlGF), 13 mediates angiogenic signals to endothelial cells through the binding with tyrosine kinase receptors designated VEGFR-1/Flt1, VEGFR-2/KDR/Flk1, and VEGFR-3/Flt-4. 14 VEGF is the ligand of both Flt1 and kinase domain receptor (KDR) and consists of several isoforms generated by alternative splicing of a single mRNA precursor (VEGF121, 145, 165, 189, or 206), which differ in their molecular mass and their biologic properties, such as the ability to bind heparin or heparinlike molecules on cell surface. 10,15 VEGF expression is enhanced spatially and temporally and is associated with physiologic events leading to angiogenesis in vivo, and its production is potentiated by hypoxia. 16 Studies on gene knockout mice demonstrated the physiologic role of VEGF and its receptors, as central regulators of the development of vascular and hemopoietic tissues. Flt1 knockout causes a selective defect in the assembly and organization of vasculature. 17 Lack of either VEGF or KDR gene causes major defects in both vasculogenesis and blood island formation, 18-21 suggesting the existence in embryonic life of a bipotent stem cell (SC) for hematopoietic and endothelial lineages, the hemangioblast.In postnatal life, both Flt1 and KDR are expressed at low levels on CD34 ϩ HPCs. [22][23][24][25][26][27] More important, the small fraction of CD34 ϩ Materials and methods Hematopoietic growth factors (HGFs) and culture mediaRecombinant human interleukin 3 (rhIL-3), granulomonocytic colony-stimulating factor (rhGM-C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.