Hebb's idea of a cell assembly as the fundamental unit of neural information processing has dominated neuroscience like no other theoretical concept within the past 60 years. A range of different physiological phenomena, from precisely synchronized spiking to broadly simultaneous rate increases, has been subsumed under this term. Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at multiple temporal scales, partly due to the severe computational burden. Here we present such a unifying methodological and conceptual framework which detects assembly structure at many different time scales, levels of precision, and with arbitrary internal organization. Applying this methodology to multiple single unit recordings from various cortical areas, we find that there is no universal cortical coding scheme, but that assembly structure and precision significantly depends on the brain area recorded and ongoing task demands.DOI: http://dx.doi.org/10.7554/eLife.19428.001
A Potts associative memory network has been proposed as a simplified model of macroscopic cortical dynamics, in which each Potts unit stands for a patch of cortex, which can be activated in one of S local attractor states. The internal neuronal dynamics of the patch is not described by the model, rather it is subsumed into an effective description in terms of graded Potts units, with adaptation effects both specific to each attractor state and generic to the patch. If each unit, or patch, receives effective (tensor) connections from C other units, the network has been shown to be able to store a large number p of global patterns, or network attractors, each with a fraction a of the units active, where the critical load pc scales roughly like pc ≈ CS 2 /a ln(1/a) (if the patterns are randomly correlated). Interestingly, after retrieving an externally cued attractor, the network can continue jumping, or latching, from attractor to attractor, driven by adaptation effects. The occurrence and duration of latching dynamics is found through simulations to depend critically on the strength of local attractor states, expressed in the Potts model by a parameter w. Here we describe with simulations and then analytically the boundaries between distinct phases of no latching, of transient and sustained latching, deriving a phase diagram in the plane w − T , where T parametrizes thermal noise effects. Implications for real cortical dynamics are briefly reviewed in the conclusions.
Decisions made by mammals and birds are often temporally extended. They require planning and sampling of decision-relevant information. Our understanding of such decision making remains in its infancy compared to simpler, forced choice paradigms. However, recent advances in algorithms supporting planning and information search provide a lens through which we can explain neural and behavioural data in these tasks. We review these advances to obtain a clearer understanding for why planning and curiosity originated in certain species but not others; how activity in the medial temporal lobe, prefrontal and cingulate cortices may support these behaviours; and how planning and information search may complement each other as means to improve future action selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.