The study investigates chemical modifications of coal fly ash (FA) treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II) and Pb(II) ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K) and pH (2 - 11) values. The maximum Cd(II) and Pb(II) ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS) and images of scanning electron microscope (SEM). The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II) and Pb(II) ion uptake from polluted waters.
Abstract:The aim of this study was to investigate the chemical modifications of coal fly ash (CFA) treated with HNO3 or ammonium acetate (AcNH4) or NaOH or sodium diethyldithiocarbamate (NaDDTC) as an adsorbent for the removal of copper(II) and zinc(II) ions from aqueous solution. The morphology of fly ash grains before and after modification was examined via X-ray diffraction (XRD) and images of scanning electron microscope (SEM). Adsorption of copper(II) and zinc(II) ions was conducted under batch process at different duration, concentrations and temperature of the suspension. Equilibrium experiments shows that the selectivity of CFA-NaOH nanoparticles towards Cu(II) ions is greater than that of Zn(II) ions, which is related to their hydrated ionic radius and first hydrolysis equilibrium constant. The adsorption isotherms were described by Langmuir and Freundlich models. Kinetic data revealed that the adsorption fits well by the pseudo-second-order rate model with high regression coefficients. Thermodynamic parameters suggested that the immobilization Cu(II) and Zn(II) ions onto CFA-NaOH is a spontaneous process. Results demonstrated that the treating coal fly ash with alkaline solution was a promising way to enhance Cu(II) and Zn(II) ions adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.