On-site wastewater treatment plants are usually unattended, so undetected failures often lead to prolonged periods of reduced performance. To stabilize the good performance of unattended plants, soft-sensors could expose faults and failures to the operator. In a previous study, we developed softsensors and showed that soft-sensors with data from unmaintained physical sensors can be as accurate as soft-sensors with data from maintained ones. The quantities sensed were pH and dissolved oxygen (DO), and soft-sensors were used to predict nitrification performance. In the present study, we use synthetic data and monitor three plants to test these soft-sensors. We find that a long sludge age and a moderate aeration rate improve the pH soft-sensor accuracy, and that the aeration regime is the main operational parameter affecting the accuracy of the DO soft-sensor. We demonstrate that integrated design, monitoring, and control are necessary to achieve robust accuracy and to obviate case-specific fine-tuning. Additionally, we provide a unique labelled dataset for further feature and data-driven soft-sensor development. Our approach is limited to sequencing batch reactors. Moreover, nitrite accumulation and alkalinity limitation cannot be detected. The strength of the approach is that unmaintained sensors drastically reduce monitoring costs, enabling the monitoring of plants hitherto unchecked. AbbreviationsASM activated sludge model COD chemical oxygen demand DO dissolved oxygen DOC dissolved organic carbon SL standard-liter OST on-site wastewater treatment plant (small, unstaffed wastewater treatment plant) PE population equivalent SA sludge age SAC254 spectral absorption coefficient at 254 nanometers SBR sequencing batch reactor WWTP wastewater treatment plant
On-site wastewater treatment plants are usually unattended, so undetected failures often lead to prolonged periods of reduced performance. To stabilize the good performance of unattended plants, soft-sensors could expose faults and failures to the operator. In a previous study, we developed soft-sensors and showed that soft-sensors with data from unmaintained physical sensors can be as accurate as soft-sensors with data from maintained ones. The quantities sensed were pH and dissolved oxygen (DO), and soft-sensors were used to predict nitrification performance. In the present study, we use synthetic data and monitor three plants to test these soft-sensors. We find that a long sludge age and a moderate aeration rate improve the pH soft-sensor accuracy, and that the aeration regime is the main operational parameter affecting the accuracy of the DO soft-sensor. We demonstrate that integrated design, monitoring, and control are necessary to achieve robust accuracy and to obviate case-specific fine-tuning. Additionally, we provide a unique labelled dataset for further feature and data-driven soft-sensor development. Our approach is limited to sequencing batch reactors. Moreover, nitrite accumulation and alkalinity limitation cannot be detected. The strength of the approach is that unmaintained sensors drastically reduce monitoring costs, enabling the monitoring of plants hitherto unchecked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.